
Harvard CS 121 and CSCI E-207
Lecture 9: Regular Languages Wrap-Up,

Context-Free Grammars

Salil Vadhan

October 2, 2012

Reading: Sipser, §2.1 (except Chomsky Normal Form).

Harvard CS 121 & CSCI E-207 October 2, 2012

Algorithmic questions about regular languages

Given X = a regular expression, DFA, or NFA,
how could you tell if:

• x ∈ L(X), where x is some string?

• L(X) = ∅?

• x ∈ L(X) but x /∈ L(Y)?

• L(X) = L(Y), where Y is another RE/FA?

• L(X) is infinite?

• There are infinitely many strings that belong to both L(X) and
L(Y)?

1

Harvard CS 121 & CSCI E-207 October 2, 2012

Generalizations of FA

Can add:

• probabilistic transitions (like Markov chains)

• outputs at each state

• rewards at each state

• infinite state spaces

Often referred to as “state machines”.

2

Harvard CS 121 & CSCI E-207 October 2, 2012

Applications of FA & generalizations

• pattern-matching algorithms (in software)

• control logic in CPUs and other hardware (input = instructions,
outputs = control, one transition per clock cycle)

• low-level natural language processing (e.g. parts of speech,
phonemes, morphemes but generally not syntax and grammar)

• components in distributed systems: I/O automata (inputs =
from environment, outputs = to environment)

• decision making in AI, Econ, etc.: Markov Decision Processes
(states = environment, inputs = actions of agent, outputs =
observations of agent, rewards = payoff to agent).

• modelling in physical, biological, technological,... systems

3

Harvard CS 121 & CSCI E-207 October 2, 2012

FORTRAN

4

Harvard CS 121 & CSCI E-207 October 2, 2012

John Backus

5

Harvard CS 121 & CSCI E-207 October 2, 2012

The Fortran Automatic Coding System for the IBM 704
EDPM (October 15, 1956)

6

Harvard CS 121 & CSCI E-207 October 2, 2012

A Fortran Lexical Definition

7

Harvard CS 121 & CSCI E-207 October 2, 2012

A Fortran Syntactic Definition

8

Harvard CS 121 & CSCI E-207 October 2, 2012

Peter Naur

9

Harvard CS 121 & CSCI E-207 October 2, 2012

Revised Report on the Algorithmic Language Algol 60 (1962)

10

Harvard CS 121 & CSCI E-207 October 2, 2012

Noam Chomsky

11

Harvard CS 121 & CSCI E-207 October 2, 2012

1956

12

Harvard CS 121 & CSCI E-207 October 2, 2012

Parse Trees

Expressing Probabilistic Context-Free Grammars in the Relaxed Unification Formalism5

❍❍ ✟✟❡
❡
❡✏✏

❚
❚
❚
❚
❚✘✘✘

❚
❚
❚
❚❚✭✭✭

Time anflies like arrow

N V D NP

NP NP

PP

VP

S

Figure 1. Parse 1—a possible parse tree for time flies like an arrow

having a special type of flies that like an arrow, i.e., time flies is a noun phrase and like is a
verb. It is conclusive from this example that a more powerful formalism than CFG is required
in order to deal with ambiguous sentences. PCFG add the ability to distinguish between the
appropriateness of a particular parse of a sentence based on a probabilistic model of the
language constructs.

❅❅ ��❡
❡
❡✥✥

❅❅��

✥✥✥✥

Time anflies like arrow

N N D NV

NP

VP

NP

S

Figure 2. Parse 2—a possible parse tree for time flies like an arrow

Table 2. Sample Probabilistic Context-Free Grammar

S → NP VP /1.0 VP → V PP /0.5 D → an /1.0

NP → N /0.4 PP → P NP /1.0 V → like /0.3

NP → N N /0.2 N → time /0.5 V → flies /0.7

NP → D N /0.4 N → arrow /0.3 P → like /1.0

VP → V NP /0.5 N → flies /0.2

We revisit the same sentence after transforming the CFG in table 1 into the PCFG listed
in table 2 by assigning probabilities to the production rules. PCFGs allow us to compute

13

Harvard CS 121 & CSCI E-207 October 2, 2012

Parse Trees

Expressing Probabilistic Context-Free Grammars in the Relaxed Unification Formalism5

❍❍ ✟✟❡
❡
❡✏✏

❚
❚
❚
❚
❚✘✘✘

❚
❚
❚
❚❚✭✭✭

Time anflies like arrow

N V D NP

NP NP

PP

VP

S

Figure 1. Parse 1—a possible parse tree for time flies like an arrow

having a special type of flies that like an arrow, i.e., time flies is a noun phrase and like is a
verb. It is conclusive from this example that a more powerful formalism than CFG is required
in order to deal with ambiguous sentences. PCFG add the ability to distinguish between the
appropriateness of a particular parse of a sentence based on a probabilistic model of the
language constructs.

❅❅ ��❡
❡
❡✥✥

❅❅��

✥✥✥✥

Time anflies like arrow

N N D NV

NP

VP

NP

S

Figure 2. Parse 2—a possible parse tree for time flies like an arrow

Table 2. Sample Probabilistic Context-Free Grammar

S → NP VP /1.0 VP → V PP /0.5 D → an /1.0

NP → N /0.4 PP → P NP /1.0 V → like /0.3

NP → N N /0.2 N → time /0.5 V → flies /0.7

NP → D N /0.4 N → arrow /0.3 P → like /1.0

VP → V NP /0.5 N → flies /0.2

We revisit the same sentence after transforming the CFG in table 1 into the PCFG listed
in table 2 by assigning probabilities to the production rules. PCFGs allow us to compute

14

Harvard CS 121 & CSCI E-207 October 2, 2012

Context-Free Grammars

• Originated as abstract model for:

• Structure of natural languages (Chomsky)

• Syntactic specification of programming languages
(Backus-Naur Form)

• A context-free grammar is a set of generative rules for strings

e.g.
G =

S → aSb

S → ε

• A derivation looks like:

S ⇒ aSb⇒ aaSbb⇒ aabb

L(G) = {ε, ab, aabb, . . .} = {anbn : n ≥ 0}
15

Harvard CS 121 & CSCI E-207 October 2, 2012

Equivalent Formalisms

1. Backus-Naur Form (aka BNF, Backus Normal Form)

due to John Backus and Peter Naur

< term > ::= < factor > | < factor > ∗ < term >

| < factor > / < term >

“|” means “or” in the metalanguage = same left-hand side

2. “Railroad Diagrams”

Context-Free Grammars 1

• Reading: Sipser, §2.1 (except Chomsky Normal Form).

Context-Free Grammars

• Originated as abstract model for:

– Structure of natural languages (Chomsky)

– Syntactic specification of programming languages (Backus-Naur Form)

• A context-free grammar is a set of generative rules for strings

e.g.

G = S → aSb
S → ε

• A derivation looks like:

S ⇒ aSb ⇒ aaSbb ⇒ aabb

L(G) = {ε, ab, aabb, . . .} = {anbn : n ≥ 0}

Equivalent Formalisms

1. Backus-Naur Form (aka BNF, Backus Normal Form)

due to John Backus and Peter Naur

< term > ::= < factor > | < factor > ∗ < term >
| < factor > / < term >

| ≡ “or” = same left-hand side

2. “Railroad Diagrams”

factor

factor

/∗

term

16

Harvard CS 121 & CSCI E-207 October 2, 2012

Formal Definitions for CFGs

A CFG G = (V,Σ, R, S)

V = Finite set of variables (or nonterminals)

Σ = The alphabet, a finite set of terminals (V ∩ Σ = ∅).
R = A finite set of rules, each of the form A⇒ w for A ∈ V
and w ∈ (V ∪ Σ)∗.

S = The start variable, a member of V

e.g. ({S}, {a, b}, {S → aSb, S → ε}, S)

17

Harvard CS 121 & CSCI E-207 October 2, 2012

Derivations

For α, β ∈ (V ∪ Σ)∗ (strings of terminals and nonterminals),

α⇒G β if α = uAv, β = uwv for some u, v ∈ (V ∪ Σ)∗ and
rule A→ w.

α⇒∗
G β (“α yields β”) if there is a sequence α0, . . . , αk for

k ≥ 0 such that
α0 = α, αk = β, and αi−1⇒G αi for each i = 1, . . . , k.

L(G) = {w ∈ Σ∗ : S ⇒∗
G w} (strings of terminals only!)

18

Harvard CS 121 & CSCI E-207 October 2, 2012

More examples of CFGs

• Arithmetic Expressions

G1:
E → x | y | E ∗ E | E + E | (E)

G2:

E → T | E + T

T → T ∗ F | F
F → (E) | x | y

Q: Which is “preferable”? Why?

• L = {x ∈ {(,)}∗ : parentheses in x are properly ‘balanced’}.

• L = {x ∈ {a, b}∗ : x has the same # of a’s and b’s}.
19

Harvard CS 121 & CSCI E-207 October 2, 2012

More examples of CFGs, cont.

• L = {x ∈ {(,)}∗ : parentheses in x are properly ‘balanced’}.

• L = {x ∈ {a, b}∗ : x has the same # of a’s and b’s}.

20

Harvard CS 121 & CSCI E-207 October 2, 2012

Parse Trees

Derivations in a CFG can be represented by parse trees.

Examples:

Each parse tree corresponds to many derivations, but has
unique leftmost derivation.

21

Harvard CS 121 & CSCI E-207 October 2, 2012

Parsing

Parsing: Given x ∈ L(G), produce a parse tree for x. (Used to
‘interpret’ x. Compilers parse, rather than merely recognize, so
they can assign semantics to expressions in the source
language.)

Ambiguity: A grammar is ambiguous if some string has two
parse trees.
Example:

22

