Harvard CS 121 and CSCI E-207
Lecture 9: Regular Languages Wrap-Up,
Context-Free Grammars

Salil Vadhan

October 2, 2012

Reading: Sipser, §2.1 (except Chomsky Normal Form).

Harvard CS 121 & CSCI E-207 October 2, 2012

Algorithmic questions about regular languages

Given X = a regular expression, DFA, or NFA,
how could you tell if:

e r ¢ L(X), where z is some string?

o L(X) =07

e rc L(X)butx ¢ L(Y)?

e .(X)= L(Y), where Y is another RE/FA?
o [.(X) is infinite?

e There are infinitely many strings that belong to both L(X) and
L(Y)?

Harvard CS 121 & CSCI E-207 October 2, 2012

Generalizations of FA

Can add:

e probabilistic transitions (like Markov chains)
e outputs at each state
e rewards at each state

e infinite state spaces

Often referred to as “state machines”.

Harvard CS 121 & CSCI E-207 October 2, 2012

Applications of FA & generalizations

e pattern-matching algorithms (in software)

e control logic in CPUs and other hardware (input = instructions,
outputs = control, one transition per clock cycle)

e low-level natural language processing (e.g. parts of speech,
phonemes, morphemes but generally not syntax and grammar)

e components in distributed systems: I/O automata (inputs =
from environment, outputs = to environment)

e decision making in Al, Econ, etc.: Markov Decision Processes
(states = environment, inputs = actions of agent, outputs =
observations of agent, rewards = payoff to agent).

e modelling in physical, biological, technological,... systems

Harvard CS 121 & CSCI E-207 October 2, 2012

FORTRAN

eE——" =

Harvard CS 121 & CSCI E-207 October 2, 2012

John Backus

Harvard CS 121 & CSCI E-207 October 2, 2012

The Fortran Automatic Coding System for the IBM 704
EDPM (October 15, 1956)

Fortran

Harvard CS 121 & CSCI E-207

A Fortran Lexical Definition

Functions

October 2, 2012

As in the above example, a FORTRAN expression may include the name of a

function (e.g. the sine function SINF), provided that the routine for evaluating

the function is either built into FORTRAN or is accessible to it as a pre-written

subroutine in 704 language on the master FORTRAN tape.

GENERAL FORM EXAMPLES
The name of the function is 4 to 7 alphabetic or numeric SINF(A4B)
characters (not special characters), of which the last must SOMEF{X,Y)
be F and the first must be alphabetic. Also, the first must SQRTF(SINF(A))
be X if and only if the value of the function is to be XTANF@3.*X)

fixed point. The name of the function is followed by
parentheses enclosing the arguments (which may be
expressions), separated by commas.

Harvard CS 121 & CSCI E-207

A Fortran Syntactic Definition

Formal Rules for Forming Expressions. By repeated use of the following

rules, all permissible expressions may be derived.

1. Any fixed point (floating point) constant, variable, or subscripted variable

is an expression of the same mode. Thus 3 and I are fixed point expressions,
and ALPHA and A(LJ,K) are floating point expressions.

If SOMEF is some function of n variables, and if E, F, , H are a set
of n expressions of the correct modes for SOMEF, then SOMEF (E, F,
. , H) is an expression of the same mode as SOMEF.

If E is an expresston, and if its first character is not + or —, then +E and
—E are expressions of the same mode as E. Thus —A is an expression, but
+—A is not.

If E is an expression, then (E) is an expression of the same mode as E.
Thus (A), ((A)), (((A))), etc. are expressions.

If E and F are expressions of the same mode, and if the first character of
F is not 4+ or —, then

E+ F

E-F

E ~ F

E/F

are expressions of the same mode. Thus A—+B and A/+B are not expres-
sions. The characters +, —, =, and / denote addition, subtraction, multi-
plication, and division.

October 2, 2012

Harvard CS 121 & CSCI E-207 October 2, 2012

Peter Naur

Harvard CS 121 & CSCI E-207 October 2, 2012

Revised Report on the Algorithmic Language Algol 60 (1962)

1.1 Formalism for syntactic description.

The syntax will be described with the aid of metalinguistic formulae (1).

(1) Cf.J. W. Backus, The syntax and semantics of the proposed international algebraic language of the Zuerich ACM-
GRAMM conference. ICIP Paris, June 1959.

Their interpretation is best explained by an example:
<ab> ::= (| [| <ab> (| <ab> <d>

Sequences of characters enclosed in the bracket <> represent metalinguistic variables whose values are sequences of
symbols. The marks : := and | (the latter with the meaning of or) are metalinguistic connectives. Any mark in a formula,
which is not a variable or a connective, denotes itself (or the class of marks which are similar to it). Juxta position of marks
and/or variables in a formula signifies juxtaposition of the sequences denoted. Thus the formula above gives a recursive
rule for the formation of values of the variable <ab>. It indicates that <ab> may have the value (or [or that given some
legitimate value of <ab>, another may be formed by following it with the character (or by following it with some value o
the variable <d>. If the values of <d> are the decimal digits, some values of <ab> are:

[CC(L(37(
(12345(

(((
[86

10

Harvard CS 121 & CSCI E-207 October 2, 2012

Noam Chomsky

11

Harvard CS 121 & CSCI E-207

1956

October 2, 2012

THREE MODELS FOR THE DESCRIPTION OF LANGUAGE

Noam Chomsky
Department of Modern Languages and Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, Massachusetts

Abstract

We investigate several conceptions of
linguistic structure to determine whether or
not they can provide simple and ®revealing®
grammars that generate all of the sentences
of English and only these. We find that no
finite-state Markov process that produces
syzbols with transition from state to state
can serve as an English grammar. Farthermore,
the particular subclass of such processes that
produce n-order statistical approximations to
English do not come closer, with increasing n,
to matching the output of an English grammar.
We formalize. the notions of "phrase structure"
and show that this gives us a method for

describing language which is essentially more

observations, to show how they are interrelated,
and to predict an indefinite number of new
phenomena. A mathematical theory has the
additional property that predictions follow
rigorously from the body of theory. Similarly,
a grammar is based on a finite number of observed
sentences (the linguist's corpus) and it
"projects® this set to an infinite set of
granmatical sentences by establishing general
"laws" (grammatical rules) framed in terms of
such hypothetical constructs as the particular
phonemes, words, phrases, and so on, of the
language under analysis. A properly formulated
grammar should determine unambiguously the set
of grammatical sentences.

12

Parse Trees

Time flies like an arrow

| | | | |
N V. P D N

\ ~—
NP \/NP
PP
VP

Parse Trees

Time flies like an arrow

| | | | |
N N V D N

NN

v

S

Harvard CS 121 & CSCI E-207 October 2, 2012

Context-Free Grammars

e Originated as abstract model for:
e Structure of natural languages (Chomsky)
e Syntactic specification of programming languages
(Backus-Naur Form)

e A context-free grammar is a set of generative rules for strings

e.g.

S — aSh
S — ¢

G =

e A derivation looks like:

S = aSb = aaSbb = aabb
L(G) = {e,ab,aabb, ...} = {a"b™ : n > 0}

15

Harvard CS 121 & CSCI E-207

Equivalent Formalisms

October 2, 2012

1. Backus-Naur Form (aka BNF, Backus Normal Form)

due to John Backus and

< term > ::= < factor >

2. “Railroad Diagrams”

Peter Naur

< factor > x < term >
< factor > / < term >

means “or” in the metalanguage = same left-hand side

factor

| factor

16

Harvard CS 121 & CSCI E-207 October 2, 2012

Formal Definitions for CFGs

ACFG G = (V,%, R, S)

V' = Finite set of variables (or nonterminals)

>, = The alphabet, a finite set of terminals (V N X = 0).

R = A finite set of rules, each of the form A = wfor A ¢V
and w € (V UX)*.

S = The start variable, a member of V

e.g. {5}, {a,b},{S — aSbh,S — ¢}, 5)

17

Harvard CS 121 & CSCI E-207 October 2, 2012

Derivations

For o, 8 € (V U X)* (strings of terminals and nonterminals),

a=q B ifa=uAv, = wwv for some u,v € (V UX)* and
rule A — w.

a =5 B (“ayields 87) if there is a sequence ay, . . ., oy for
k > 0 such that

apg =, o = B,and a;_1 =g a;foreach: =1, ... k.

L(G) ={w e ¥*: S =7 w} (strings of terminals only!)

18

Harvard CS 121 & CSCI E-207 October 2, 2012

More examples of CFGs

e Arithmetic Expressions

Gl:

Gz:
E - T|E+T

T — TxF|F
F = (B)|z|y

Q: Which is “preferable”? Why?

19

Harvard CS 121 & CSCI E-207 October 2, 2012

More examples of CFGs, cont.

o . ={x e {(,)}*: parentheses in x are properly ‘balanced’}.

o . ={z € {a,b}* : x has the same # of a’s and b’s}.

20

Harvard CS 121 & CSCI E-207 October 2, 2012

Parse Trees

Derivations in a CFG can be represented by parse trees.

Examples:

Each parse tree corresponds to many derivations, but has
unique leftmost derivation.

21

Harvard CS 121 & CSCI E-207 October 2, 2012

Parsing

Parsing: Given z € L(G), produce a parse tree for x. (Used to
‘interpret’ x. Compilers parse, rather than merely recognize, so

they can assign semantics to expressions in the source
language.)

Ambiguity: A grammar is ambiguous if some string has two
parse trees.

Example:

22

