Harvard CS 121 and CSCI E-207 Lecture 12: General Context-Free Recognition

Salil Vadhan

October 11, 2012

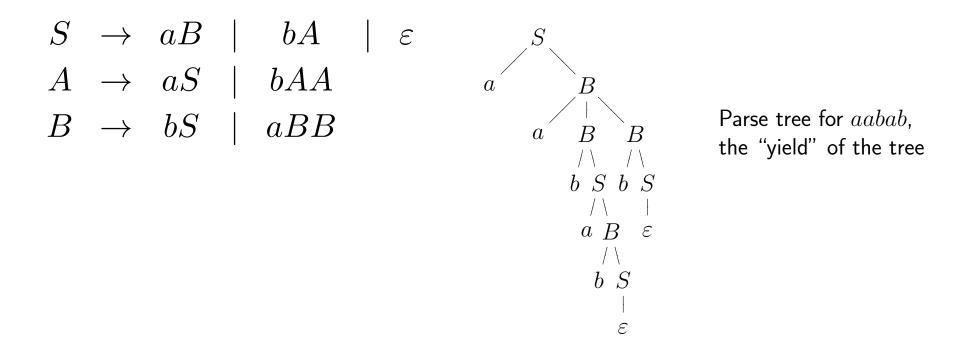
Reading: Sipser, Section 2.3 and Section 2.1 (material on Chomsky Normal Form).

Pumping Lemma for CFLs

Lemma: If *L* is context-free, then there is a number *p* (the pumping length) such that any $s \in L$ of length at least *p* can be divided into s = uvxyz, where

- 1. $uv^i xy^i z \in L$ for every $i \ge 0$,
- 2. $v \neq \varepsilon$ or $y \neq \varepsilon$, and
- **3.** $|vxy| \leq p$.
- **Proposition:** $\{a^nb^nc^n : n \ge 0\}$ is not CF.
- Corollary: CFLs not closed under intersection (why?)
- Corollary: CFLs not closed under complement (why?)

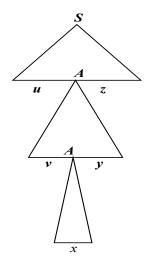
Recall: Parse Trees



<u>Height</u> = max length path from S to a terminal symbol = 6 in above example.

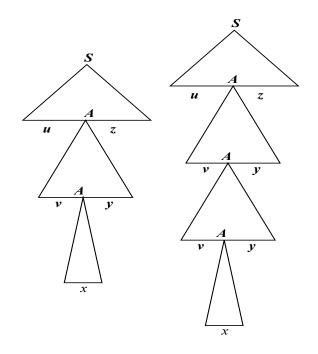
Proof Idea for Pumping Theorem

Show that there exists a p such that any string s of length $\geq p$ has a parse tree of the form:



Proof Idea for Pumping Theorem

Show that there exists a p such that any string s of length $\geq p$ has a parse tree of the form:



Context-Free Recognition

- Goal: Given CFG G and string w to determine if $w \in L(G)$
- First attempt: Construct a PDA M from G and run M on w.
- Brute-Force Method:

Check all parse trees of height up to some upper limit depending on G and |w|

Exponentially costly

- Better:
 - 1. Transform *G* into Chomsky normal form (CNF) (once for *G*)
 - 2. Apply a special algorithm for CNF grammars (once for each w)

Chomsky Normal Form

Def: A grammar is in Chomsky normal form if

- the only possible rule with ε as the RHS is S → ε
 (Of course, this rule occurs iff ε ∈ L(G))
- Every other rule is of the form

1) $X \rightarrow YZ$

where X, Y, Z are variables, and $Y, Z \neq S$

2) $X \rightarrow \sigma$

where X is variable and σ is a single terminal symbol

Transforming a CFG into Chomsky Normal Form

Definitions:

- $\underline{\varepsilon}$ -rule: one of the form $X \to \varepsilon$
- Long Rule: one of the form $X \to \alpha$ where $|\alpha| > 2$.
- <u>Unit Rule</u> : One of the form $X \to Y$

where $X, Y \in V$

Terminal-Generating Rule: one of the form X → α
 where α ∉ V* and |α| > 1 (α has at least one terminal)

Eliminate non-Chomsky-Normal-Form Rules In Order:

1. All ε -rules, except maybe $S \to \varepsilon$

2. All unit rules

3. All long rules

- 4. All terminal-generating rules
 - While eliminating rules of type *j*, we make sure not to reintroduce rules of type *i* < *j*.

Eliminating *c***-Rules**

- 0. Ensure start variable does not appear on the RHS of any rule (by adding new start variable if necessary).
- 1. To eliminate ε -rules, repeatedly do the following:
 - a. Pick a ε -rule $Y \to \varepsilon$ and remove it.

b. Given a rule $X \to \alpha$ where α contains n occurrences of Y, replace it with 2^n rules in which $0, \ldots, n$ occurrences are replaced by ε . (Do not add $X \to \varepsilon$ if previously removed.)

e.g.

$$X \to aYZbY \implies$$

(Why does this terminate?)

Eliminating Unit and Long Rules

- 2. To eliminate unit rules, repeatedly do the following:
 - a. Pick a unit rule $A \rightarrow B$ and remove it.
 - b. For every rule $B \rightarrow u$, add rule $A \rightarrow u$ unless this is a unit rule that was previously removed.
- 3. To eliminate long rules, repeatedly do the following:
 - a. Remove a long rule $A \rightarrow u_1 u_2 \cdots u_k$, where each $u_i \in V \cup \Sigma$ and $k \geq 3$.
 - b. Replace with rules

 $A \rightarrow u_1 A_1, A_1 \rightarrow u_2 A_2, \ldots, A_{k-2} \rightarrow u_{k-1} u_k$, where A_1, \ldots, A_{k-2} are newly introduced variables used only in these rules.

Eliminating Terminal-Generating Rules

- 4. To eliminate terminal-generating rules:
 - a. For each terminal a introduce a new nonterminal A.
 - b. Add the rules $A \rightarrow a$
 - c. "Capitalize" existing rules, e.g.

replace $X \to aY$ with $X \to AY$

Example of Transformation to Chomsky Normal Form

Starting grammar:

$$\begin{array}{l} S \rightarrow XX \\ X \rightarrow aXb|\varepsilon \end{array}$$

Benefit of CNF for Deciding if $w \in L(G)$

• **Observation:** If $S \Rightarrow XY \Rightarrow^* w$, then w = uv, $X \Rightarrow^* u$, $Y \Rightarrow^* v$ where u, v are *strictly shorter* than w.

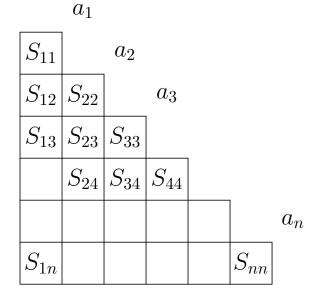
• **Divide and Conquer:** can decide whether *S* yields *w* by recursively determining which variables yield substrings of *w*.

• **Dynamic Programming:** record answers to all subproblems to avoid repeating work.

Determining $w \in L(G)$, for G in CNF

Let $w = a_1 \dots a_n$, $a_i \in \Sigma$. Determine sets S_{ij} $(1 \le i \le j \le n)$:

$$S_{ij} = \{X : X \stackrel{*}{\Rightarrow} a_i \dots a_j, X \text{ variable of } G\}$$



• $w \in L(G)$ iff start symbol $\in S_{1n}$

Filling in the Matrix

• Calculate S_{ij} by induction on j - i

$$(j - i = 0) S_{ii} = \{X : X \to a_i \text{ is a rule of } G\}$$
$$(j - i > 0) X \in S_{ij} \text{ iff } \exists \text{ rule } X \to YZ$$
$$\exists k : i \leq k < j$$
such that $Y \in S_{ik}$
$$Z \in S_{k+1,j}$$

e.g. w = abaabb

The Chomsky Normal Form Parsing Algorithm

for
$$i \leftarrow 1$$
 to n do
 $S_{ii} = \{X : X \rightarrow a_i \text{ is a rule }\}$
for $d \leftarrow 1$ to $n - 1$ do
for $i \leftarrow 1$ to $n - d$ do
 $S_{i,i+d} \leftarrow \bigcup_{j=i}^{i+d-1} \begin{cases} X : X \rightarrow YZ \text{ is a rule,} \\ Y \in S_{ij}, Z \in S_{j+1,i+d} \end{cases}$

Complexity: $\mathcal{O}(n^3)$.

Of what does this triply nested loop remind you?

- Matrix Multiplication
- In fact, better matrix multiplication algorithms yield (asymptotically) better general context free parsing algorithms
- Fastest known matrix multiplication algorithm uses $\mathcal{O}(n^{2.373})$ operations (Stothers '11 and Williams '11, improving Coppersmith & Winograd '89).

CF Recognition in Practice

In compilers for programming languages, parsing is done via algorithms that correspond to *Deterministic* PDAs (DPDAs).

What is the advantage over CNF algorithm?

Our CFG \mapsto PDA construction is highly nondeterministic.

• Constructs parse tree "top-down" from start variable; input might not be used until the very end.

A dual, "bottom-up" approach sometimes yields a DPDA.

- Construct parse tree starting from input string.
- Yields a DPDA if G is a "DCFG".
- We can design programming languages to ensure the DCFG property. (DCFLs are a strict subset of CFLs.)

Beyond Context-Free Languages

- A Context-Sensitive Grammar allows rules of the form
 α → β, where α and β are strings and |α| ≤ |β|, so long as α
 contains at least one nonterminal.
- The possibility of using rules such as $aB \rightarrow aDE$ makes the grammar "sensitive to context"
- Is there an algorithm for determining whether $w \in L(G)$ where G is a CSG?
- But the field moved, and now we also move, from syntactic structures to computational difficulty.