
Harvard CS 121 and CSCI E-207
Lecture 12: General Context-Free

Recognition

Salil Vadhan

October 11, 2012

Reading: Sipser, Section 2.3 and Section 2.1 (material on
Chomsky Normal Form).

Harvard CS 121 & CSCI E-207 October 11, 2012

Pumping Lemma for CFLs

Lemma: If L is context-free, then there is a number p (the
pumping length) such that any s ∈ L of length at least p can be
divided into s = uvxyz, where

1. uvixyiz ∈ L for every i ≥ 0,

2. v 6= ε or y 6= ε, and

3. |vxy| ≤ p.

• Proposition: {anbncn : n ≥ 0} is not CF.

• Corollary: CFLs not closed under intersection (why?)

• Corollary: CFLs not closed under complement (why?)

1

Harvard CS 121 & CSCI E-207 October 11, 2012

Recall: Parse Trees

S → aB | bA | ε

A → aS | bAA

B → bS | aBB

More on CFLs 2

Pumping Theorem for CFLs

Theorem: If L is context-free, then there is a number p (the pumping length) such that any
s ∈ L of length at least p can be divided into s = uvxyz, where

1. uvixyiz ∈ L for every i ≥ 0,

2. v #= ε or y #= ε, and

3. |vxy| ≤ p.

Consequence: {anbncn : n ≥ 0} is not CF.

Recall: Parse Trees

S → aB | bA | ε

A → aS | bAA

B → bS | aBB

S

a B

a B B

b S b S

a B ε

b S

ε

Parse tree for aabab,
the “yield” of the tree

Height = max length path from S to a terminal symbol = 6 in above example.

Height = max length path from S to a terminal symbol = 6 in
above example.

2

Harvard CS 121 & CSCI E-207 October 11, 2012

Proof Idea for Pumping Theorem

Show that there exists a p such that any string s of length ≥ p
has a parse tree of the form:

u

v

x

y

z
A

A

S

3

Harvard CS 121 & CSCI E-207 October 11, 2012

Proof Idea for Pumping Theorem

Show that there exists a p such that any string s of length ≥ p
has a parse tree of the form:

u

v

x

y

z
A

A

S

u

v

x

y

z
A

A

S

v y
A

4

Harvard CS 121 & CSCI E-207 October 11, 2012

Context-Free Recognition

• Goal: Given CFG G and string w to determine if w ∈ L(G)

• First attempt: Construct a PDA M from G and run M on w.

• Brute-Force Method:

Check all parse trees of height up to some upper limit
depending on G and |w|

Exponentially costly

• Better:

1. Transform G into Chomsky normal form (CNF) (once for G)

2. Apply a special algorithm for CNF grammars

(once for each w)
5

Harvard CS 121 & CSCI E-207 October 11, 2012

Chomsky Normal Form

Def: A grammar is in Chomsky normal form if

• the only possible rule with ε as the RHS is S → ε

(Of course, this rule occurs iff ε ∈ L(G))

• Every other rule is of the form

1) X → YZ

where X,Y, Z are variables, and Y,Z 6= S

2) X → σ

where X is variable and σ is a single terminal symbol

6

Harvard CS 121 & CSCI E-207 October 11, 2012

Transforming a CFG into Chomsky Normal Form

Definitions:

• ε-rule: one of the form X → ε

• Long Rule: one of the form X → α where |α| > 2.

• Unit Rule : One of the form X → Y

where X,Y ∈ V

• Terminal-Generating Rule: one of the form X → α

where α /∈ V ∗ and |α| > 1 (α has at least one terminal)

7

Harvard CS 121 & CSCI E-207 October 11, 2012

Eliminate non-Chomsky-Normal-Form Rules In Order:

1. All ε-rules, except maybe S → ε

2. All unit rules

3. All long rules

4. All terminal-generating rules

• While eliminating rules of type j, we make sure not to
reintroduce rules of type i < j.

8

Harvard CS 121 & CSCI E-207 October 11, 2012

Eliminating ε-Rules

0. Ensure start variable does not appear on the RHS of any rule
(by adding new start variable if necessary).

1. To eliminate ε-rules, repeatedly do the following:

a. Pick a ε-rule Y → ε and remove it.

b. Given a rule X → α where α contains n occurrences of Y ,
replace it with 2n rules in which 0, . . . , n occurrences are
replaced by ε. (Do not add X → ε if previously removed.)

e.g.
X → aY ZbY ⇒

(Why does this terminate?)

9

Harvard CS 121 & CSCI E-207 October 11, 2012

Eliminating Unit and Long Rules

2. To eliminate unit rules, repeatedly do the following:

a. Pick a unit rule A→ B and remove it.

b. For every rule B → u, add rule A→ u unless this is a unit
rule that was previously removed.

3. To eliminate long rules, repeatedly do the following:

a. Remove a long rule A→ u1u2 · · ·uk, where each ui ∈ V ∪ Σ

and k ≥ 3.

b. Replace with rules
A→ u1A1, A1→ u2A2, . . . , Ak−2→ uk−1uk, where A1, . . . ,
Ak−2 are newly introduced variables used only in these rules.

10

Harvard CS 121 & CSCI E-207 October 11, 2012

Eliminating Terminal-Generating Rules

4. To eliminate terminal-generating rules:

a. For each terminal a introduce a new nonterminal A.

b. Add the rules A→ a

c. “Capitalize” existing rules, e.g.

replace X → aY

with X → AY

11

Harvard CS 121 & CSCI E-207 October 11, 2012

Example of Transformation to Chomsky Normal Form

Starting grammar:

S → XX

X → aXb|ε

12

Harvard CS 121 & CSCI E-207 October 11, 2012

Benefit of CNF for Deciding if w ∈ L(G)

• Observation: If S ⇒ XY ⇒∗ w, then w = uv, X ⇒∗ u,
Y ⇒∗ v where u, v are strictly shorter than w.

• Divide and Conquer: can decide whether S yields w by
recursively determining which variables yield substrings of w.

• Dynamic Programming: record answers to all subproblems
to avoid repeating work.

13

Harvard CS 121 & CSCI E-207 October 11, 2012

Determining w ∈ L(G), for G in CNF

Let w = a1 . . . an, ai ∈ Σ.
Determine sets Sij (1 ≤ i ≤ j ≤ n):

Sij = {X : X
∗⇒ ai . . . aj, X variable of G}

More on CFLs 6

Example of Transformation to Chomsky Normal Form

Starting grammar:

S → [S]
S → SS
S → ε

Determining w ∈ L(G), for G in CNF

Let w = a1 . . . an, ai ∈ Σ.
Determine sets Sij (1 ≤ i ≤ j ≤ n):

Sij = {X : X
∗

⇒ ai . . . aj,X variable of G}

S11

S12 S22

S13 S23 S33

S24 S34 S44

SnnS1n

a1

a2

a3

an

– w ∈ L(G) iff start symbol ∈ S1n

– Calculate Sij by induction on j − i

(j − i = 0) Sii = {X : X → ai is a rule of G}
(j − i > 0) X ∈ Sij iff ∃ rule X → Y Z

∃k : i ≤ k < j
such that Y ∈ Sik

Z ∈ Sk+1,j

Example: w = [[]][]

Complexity O(n3).

• w ∈ L(G) iff start symbol ∈ S1n 14

Harvard CS 121 & CSCI E-207 October 11, 2012

Filling in the Matrix

• Calculate Sij by induction on j − i

(j − i = 0) Sii = {X : X → ai is a rule of G}
(j − i > 0) X ∈ Sij iff ∃ rule X → Y Z

∃k : i ≤ k < j

such that Y ∈ Sik

Z ∈ Sk+1,j

e.g. w = abaabb

15

Harvard CS 121 & CSCI E-207 October 11, 2012

The Chomsky Normal Form Parsing Algorithm

for i← 1 to n do

Sii = {X : X → ai is a rule }

for d← 1 to n− 1 do

for i← 1 to n− d do

Si,i+d←
i+d−1⋃
j=i

{
X : X → Y Z is a rule,
Y ∈ Sij, Z ∈ Sj+1,i+d

}

Complexity: O(n3).

16

Harvard CS 121 & CSCI E-207 October 11, 2012

Of what does this triply nested loop remind you?

• Matrix Multiplication

• In fact, better matrix multiplication algorithms yield
(asymptotically) better general context free parsing algorithms

• Fastest known matrix multiplication algorithm uses O(n2.373)

operations (Stothers ‘11 and Williams ‘11, improving
Coppersmith & Winograd ‘89).

17

Harvard CS 121 & CSCI E-207 October 11, 2012

CF Recognition in Practice

In compilers for programming languages, parsing is done via
algorithms that correspond to Deterministic PDAs (DPDAs).

• What is the advantage over CNF algorithm?

Our CFG7→PDA construction is highly nondeterministic.

• Constructs parse tree “top-down” from start variable; input
might not be used until the very end.

A dual, “bottom-up” approach sometimes yields a DPDA.

• Construct parse tree starting from input string.

• Yields a DPDA if G is a “DCFG”.

• We can design programming languages to ensure the DCFG
property. (DCFLs are a strict subset of CFLs.)

18

Harvard CS 121 & CSCI E-207 October 11, 2012

Beyond Context-Free Languages

• A Context-Sensitive Grammar allows rules of the form
α→ β, where α and β are strings and |α| ≤ |β|, so long as α
contains at least one nonterminal.

• The possibility of using rules such as aB → aDE makes the
grammar “sensitive to context”

• Is there an algorithm for determining whether w ∈ L(G) where
G is a CSG?

• But the field moved, and now we also move, from syntactic
structures to computational difficulty.

19

