Harvard CS 121 and CSCI E-207 Lecture 14: The Church-Turing Thesis

Salil Vadhan

October 18, 2012

- Reading: Sipser, §3.2, §3.3.
"Computability"
- Defined in terms of Turing machines
- Computable $=$ recursive/decidable (sets, functions, etc.)
- In fact an abstract, universal notion
- Many other computational models yield exactly the same classes of computable sets and functions
- Power of a model = what is computable using the model (extensional equivalence)
- Not programming convenience, speed (for now...), etc.
- All translations between models are constructive

TM Extensions That Do Not Increase Its Power

- TMs with a 2-way infinite tape, unbounded to left and right

$$
\begin{array}{c|c|c|c|c|c|c}
\cdots \\
\cdots & \square & a & b & a & a & \cdots \\
\hline
\end{array}
$$

Proof that TMs with 2-way infinite tapes are no more powerful than the 1-way infinite tape variety:
"Simulation." Convert any 2-way infinite TM into an equivalent 1-way infinite TM "with a two-track tape."

$$
\begin{aligned}
& \begin{array}{l|c|c|c|c|c|c|c|c|c|c}
\\
\cdots & c & a & \sqcup & b & a & \sqcup & b & a & a & \cdots \\
\hline & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & \\
\text { infinite TM } M
\end{array}
\end{aligned}
$$

Recall the Formal Definition of a TM:

A (deterministic) Turing Machine (TM) is a 7 -tuple
($Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}$), where:

- Q is a finite set of states, containing
- the start state q_{0}
- the accept state $q_{\text {accept }}$
- the reject state $q_{\text {reject }}\left(\neq q_{\text {accept }}\right)$
- Σ is the input alphabet
- Γ is the tape alphabet
- Contains Σ
- Contains "blank" symbol $\sqcup \in \Gamma-\Sigma$
- $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ is the transition function.

Formalization of the Simulation of 2-way infinite tape TM

Formally, $\Gamma^{\prime}=(\Gamma \times \Gamma) \cup\{\$\}$.
M^{\prime} includes, for every state q of M, two states:
$\langle q, 1\rangle \sim$ " q, but we are working on upper track"
$\langle q, 2\rangle \sim$ " q, but we are working on lower track"
e.g. If $\delta_{M}\left(q, a_{1}\right)=(p, b, L)$ then
$\delta_{M^{\prime}}\left(\langle q, 1\rangle,\left\langle a_{1}, a_{2}\right\rangle\right)=\left(\langle p, 1\rangle,\left\langle b, a_{2}\right\rangle, R\right)$.
Also need transitions for:

- Lower track
- U-turn on hitting endmarker
- Formatting input into "2-tracks"

Describing Turing Machines

Formal Description

- 7 -tuple or state diagram
- Most of the course so far

Implementation Description

- Prose description of tape contents, head movements
- Omit details of states and transition functions (but do convince yourself that a TM can do what you're describing!)
- This lecture, next lecture, ps6

High-Level Description

- Starting in a couple of lectures...

More extensions

- Adding multiple tapes does not increase power of TMs

(Convention: First tape used for I/O, like standard TM; Second tape is available for scratch work)

Simulation of multiple tapes

- Simulate a k-tape TM by a one-tape TM whose tape is split (conceptually) into $2 k$ tracks:
- k tracks for tape symbols
- k tracks for head position markers (one in each track)

(Sipser does different simulation.)

Simulation steps

- To simulate one move of the k-tape TM:

Speed of the Simulation

- Note that the "equivalence" in ability to compute functions or decide languages does not mean comparable speed.
e.g. A standard TM can decide $L=\left\{w \# w: w \in \Sigma^{*}\right\}$ in time $O\left(|w|^{2}\right)$. But there is an $O(|w|)$-time 2-tape decider.
- Let $T_{M}: \Sigma^{*} \rightarrow \mathcal{N}$ measure the amount of time a decider M uses on an input. That is, $T_{M}(w)$ is the number of steps TM M takes to halt on input w.
- General fact about multitape to single-tape slowdown:

Theorem: If M is a multitape TM that takes time $T(w)$ when run on input w, then there is a 1 -tape machine M^{\prime} and a constant c such that M^{\prime} simulates M and takes at most $c T(w)^{2}$ steps on input w.

Equivalent Formalisms

Many other formalisms for computation are equivalent in power to the TM formalism:

- TMs with 2-dimensional tapes
- Random-access TMs
- General Grammars
- 2-stack PDAs, 2-counter machines
- Church's λ-calculus (μ-recursive functions)
- Markov algorithms
- Your favorite programming language (C, Python, OCaml, ...)
- In any formalism, each formalized algorithm is expressible as a bit string, number, ...

The Church-Turing Thesis

The equivalence of each to the others is a mathematical theorem.

That these formal models of algorithms capture our intuitive notion of algorithms is the Church-Turing Thesis.

- Church's thesis = partial recursive functions, Turing's thesis $=$ Turing machines
- The Church-Turing Thesis is an extramathematical proposition, not subject to formal proof.

Nondeterministic TMs

- Like TMs, but $\delta: Q \times \Gamma \rightarrow P(Q \times \Gamma \times\{L, R\})$
- It mainly makes sense to think of NTMs as recognizers
$L(M)=\{w: M$ has some accepting computation on input $w\}$
Example: NTM to recognize
$\{w: w$ is the binary notation for a product of two integers $\geq 2\}$

NTMs recognize the same languages as TMs

- Given a NTM M, we must construct a TM M^{\prime} that determines, on input w, whether M has an accepting computation on input w.
- M^{\prime} systematically tries
\rightarrow all one-step computations
\rightarrow all two-step computations
\rightarrow all three-step computations
:

Enumerating Computations by Dovetailing

- There is a bounded number of k-step computations, for each k. (because for each configuration there is only a constant number of "next" configurations in one step)
- Ultimately M^{\prime} either:
- discovers an accepting computation of M, and accepts itself,
- or searches forever, and does not halt.

Dovetailing Details

- Suppose that the maximum number of different transitions for a given (q, a) is C.
- Number those transitions $1, \ldots, C$ (or less)
- Any computation of k steps is determined by a sequence of k numbers $\leq C$ (the "nondeterministic choices").
- How M^{\prime} works: 3 tapes
\#1 Original input to $M \sqcup$
\#2 Simulated tape of M
\#3 $1213 \sqcup \ldots$ Nondeterministc choices for M^{\prime}

Simulating one step of M

- Each major phase of the simulation by M^{\prime} is to simulate one finite computation by M, using tape \#3 to resolve nondeterministic ambiguities.
- Between major phases, M^{\prime}
- erases tape \#2 and copies tape \#1 to tape \#2
- Replaces string in $\{1, \ldots, C\}^{*}$ on tape \#3 with the lexicographically next string to generate the next set of nondeterministic choices to follow.
- Claim: $L\left(M^{\prime}\right)=L(M)$
- Q: Slowdown?

