Harvard CS 121 and CSCI E-207 Lecture 14: The Church–Turing Thesis

Salil Vadhan

October 18, 2012

• **Reading:** Sipser, §3.2, §3.3.

"Computability"

- Defined in terms of Turing machines
- Computable = recursive/decidable (sets, functions, etc.)
- In fact an abstract, universal notion
- Many other computational models yield exactly the same classes of computable sets and functions
- Power of a model = what is computable using the model (extensional equivalence)
- Not programming convenience, speed (for now...), etc.
- All translations between models are **constructive**

TM Extensions That Do Not Increase Its Power

• TMs with a 2-way infinite tape, unbounded to left and right

<u>Proof</u> that TMs with 2-way infinite tapes are no more powerful than the 1-way infinite tape variety:

"Simulation." Convert any 2-way infinite TM into an equivalent 1-way infinite TM "with a two-track tape."

Recall the Formal Definition of a TM:

A (deterministic) Turing Machine (TM) is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, where:

- Q is a finite set of states, containing
 - the start state q_0
 - the accept state q_{accept}
 - the reject state $q_{reject} (\neq q_{accept})$
- Σ is the input alphabet
- Γ is the tape alphabet
 - Contains Σ
 - Contains "blank" symbol $\sqcup \in \Gamma \Sigma$
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is the <u>transition function</u>.

Formalization of the Simulation of 2-way infinite tape TM

Formally, $\Gamma' = (\Gamma \times \Gamma) \cup \{\$\}.$

M' includes, for every state q of M, two states:

 $\langle q, 1 \rangle \sim$ "q, but we are working on upper track" $\langle q, 2 \rangle \sim$ "q, but we are working on lower track"

e.g. If $\delta_M(q, a_1) = (p, b, L)$ then $\delta_{M'}(\langle q, 1 \rangle, \langle a_1, a_2 \rangle) = (\langle p, 1 \rangle, \langle b, a_2 \rangle, R).$

Also need transitions for:

- Lower track
- U-turn on hitting endmarker
- Formatting input into "2-tracks"

Describing Turing Machines

Formal Description

- 7-tuple or state diagram
- Most of the course so far

Implementation Description

- Prose description of tape contents, head movements
- Omit details of states and transition functions (but do convince yourself that a TM can do what you're describing!)
- This lecture, next lecture, ps6

High-Level Description

• Starting in a couple of lectures...

More extensions

• Adding multiple tapes does not increase power of TMs

(Convention: First tape used for I/O, like standard TM; Second tape is available for scratch work)

Simulation of multiple tapes

- Simulate a k-tape TM by a one-tape TM whose tape is split (conceptually) into 2k tracks:
 - *k* tracks for tape symbols
 - *k* tracks for head position markers (one in each track)

(Sipser does different simulation.)

Simulation steps

• To simulate <u>one move</u> of the *k*-tape TM:

Speed of the Simulation

• Note that the "equivalence" in ability to compute functions or decide languages does not mean comparable speed.

e.g. A standard TM can decide $L = \{w \# w : w \in \Sigma^*\}$ in time $O(|w|^2)$. But there is an O(|w|)-time 2-tape decider.

- Let $T_M : \Sigma^* \to \mathcal{N}$ measure the amount of time a decider M uses on an input. That is, $T_M(w)$ is the number of steps TM M takes to halt on input w.
- General fact about multitape to single-tape slowdown:

<u>Theorem:</u> If *M* is a multitape TM that takes time T(w) when run on input *w*, then there is a 1-tape machine *M'* and a constant *c* such that *M'* simulates *M* and takes at most $c T(w)^2$ steps on input *w*.

Equivalent Formalisms

Many other formalisms for computation are equivalent in power to the TM formalism:

- TMs with 2-dimensional tapes
- Random-access TMs
- General Grammars
- 2-stack PDAs, 2-counter machines
- Church's λ -calculus (μ -recursive functions)
- Markov algorithms
- Your favorite programming language (C, Python, OCaml, ...)
- In any formalism, each formalized algorithm is expressible as a bit string, number, ...

The Church-Turing Thesis

The equivalence of each to the others is a mathematical <u>theorem</u>.

That these <u>formal models</u> of algorithms capture our <u>intuitive notion</u> of algorithms is the **Church–Turing Thesis**.

- Church's thesis = partial recursive functions, Turing's thesis = Turing machines
- The Church–Turing Thesis is an extramathematical proposition, not subject to formal proof.

Nondeterministic TMs

- Like TMs, but $\delta: Q \times \Gamma \to P(Q \times \Gamma \times \{L, R\})$
- It mainly makes sense to think of NTMs as recognizers

 $L(M) = \{w : M \text{ has some accepting computation on input } w\}$

Example: NTM to recognize $\{w : w \text{ is the binary notation for a product of two integers } \geq 2\}$

NTMs recognize the same languages as TMs

- Given a NTM *M*, we must construct a TM *M'* that determines, on input *w*, whether *M* has an accepting computation on input *w*.
- *M'* systematically tries
 - \rightarrow all one-step computations
 - \rightarrow all two-step computations
 - \rightarrow all three-step computations

i

Enumerating Computations by Dovetailing

- There is a bounded number of k-step computations, for each k.
 (because for each configuration there is only a constant number of "next" configurations in one step)
- Ultimately M' either:
 - discovers an accepting computation of M, and accepts itself,
 - or searches forever, and does not halt.

Dovetailing Details

- Suppose that the maximum number of different transitions for a given (q, a) is C.
- Number those transitions $1, \ldots, C$ (or less)
- Any computation of k steps is determined by a sequence of k numbers ≤ C (the "nondeterministic choices").
- How M' works: 3 tapes
 - #1 Original input to $M \sqcup$
 - #2 Simulated tape of M

 $1213 \sqcup \cdots$ Nondeterministc choices for M'

Simulating one step of M

- Each major phase of the simulation by *M*' is to simulate one finite computation by *M*, using tape #3 to resolve nondeterministic ambiguities.
- Between major phases, M'
 - erases tape #2 and copies tape #1 to tape #2
 - Replaces string in $\{1, \ldots, C\}^*$ on tape #3 with the lexicographically next string to generate the next set of nondeterministic choices to follow.
- <u>Claim</u>: L(M') = L(M)
- Q: Slowdown?