
Harvard CS 121 and CSCI E-207
Lecture 14: The Church–Turing Thesis

Salil Vadhan

October 18, 2012

• Reading: Sipser, §3.2, §3.3.

Harvard CS 121 & CSCI E-207 October 18, 2012

“Computability”

• Defined in terms of Turing machines

• Computable = recursive/decidable (sets, functions, etc.)

• In fact an abstract, universal notion

• Many other computational models yield exactly the same
classes of computable sets and functions

• Power of a model = what is computable using the model
(extensional equivalence)

• Not programming convenience, speed (for now...), etc.

• All translations between models are constructive
1

Harvard CS 121 & CSCI E-207 October 18, 2012

TM Extensions That Do Not Increase Its Power

• TMs with a 2-way infinite tape, unbounded to left and right

Variants of TMs, Church-Turing Thesis 1

• Reading: Sipser, §3.2, §3.3.

TM Extensions That Do Not Increase Its Power

• TMs with a 2-way infinite tape

! a b a a· · · · · ·

– Unbounded tape to left as well as right

• Claim: Any language recognizable (resp., decidable) by a 2-way infinite tape is also recognizable
(resp., decidable) by some standard TM

Proof: “Simulation.” Convert any 2-way infinite TM into an equivalent 1-way infinite TM.

c a ! b a ! b a a· · · · · ·
Tape of 2-way
infinite TM M

−4 −3 −2 −1 0 1 2 3 4

ca!b
a ! b a a

· · ·
$

−4−3−2−1

0 1 2 3 4

Corresponding
tape of 1-way
infinite TM M ′

= 〈b, a〉
b

a

We think of M ′ as having a 2-track tape.

Formally, Γ′ = (Γ × Γ) ∪ {$}.

M ′ includes, for every state q of M , two states:

〈q, 1〉 ∼ “q, but we are working on upper track”

〈q, 2〉 ∼ “q, but we are working on lower track”

e.g. If δM (q, a1) = (p, b, L) then δM ′(〈q, 1〉, 〈a1, a2〉) = (〈p, 1〉, 〈b, a2〉, R).

Also need transitions for:

– Lower track

– U-turn on hitting endmarker

– Formatting input into “2-tracks”

Proof that TMs with 2-way infinite tapes are no more powerful
than the 1-way infinite tape variety:

“Simulation.” Convert any 2-way infinite TM into an equivalent
1-way infinite TM “with a two-track tape.”

Variants of TMs, Church-Turing Thesis 1

• Reading: Sipser, §3.2, §3.3.

TM Extensions That Do Not Increase Its Power

• TMs with a 2-way infinite tape

! a b a a· · · · · ·

– Unbounded tape to left as well as right

• Claim: Any language recognizable (resp., decidable) by a 2-way infinite tape is also recognizable
(resp., decidable) by some standard TM

Proof: “Simulation.” Convert any 2-way infinite TM into an equivalent 1-way infinite TM.

c a ! b a ! b a a· · · · · ·
Tape of 2-way
infinite TM M

−4 −3 −2 −1 0 1 2 3 4

ca!b
a ! b a a

· · ·
$

−4−3−2−1

0 1 2 3 4

Corresponding
tape of 1-way
infinite TM M ′

= 〈b, a〉
b

a

We think of M ′ as having a 2-track tape.

Formally, Γ′ = (Γ × Γ) ∪ {$}.

M ′ includes, for every state q of M , two states:

〈q, 1〉 ∼ “q, but we are working on upper track”

〈q, 2〉 ∼ “q, but we are working on lower track”

e.g. If δM (q, a1) = (p, b, L) then δM ′(〈q, 1〉, 〈a1, a2〉) = (〈p, 1〉, 〈b, a2〉, R).

Also need transitions for:

– Lower track

– U-turn on hitting endmarker

– Formatting input into “2-tracks”

2

Harvard CS 121 & CSCI E-207 October 18, 2012

Recall the Formal Definition of a TM:

A (deterministic) Turing Machine (TM) is a 7-tuple
(Q,Σ,Γ, δ, q0, qaccept, qreject), where:
• Q is a finite set of states, containing

• the start state q0

• the accept state qaccept
• the reject state qreject (6= qaccept)

• Σ is the input alphabet

• Γ is the tape alphabet

• Contains Σ

• Contains “blank” symbol t ∈ Γ− Σ

• δ : Q× Γ→ Q× Γ× {L,R} is the transition function.
3

Harvard CS 121 & CSCI E-207 October 18, 2012

Formalization of the Simulation of 2-way infinite tape TM

Formally, Γ′ = (Γ× Γ) ∪ {$}.

M ′ includes, for every state q of M , two states:

〈q, 1〉 ∼ “q, but we are working on upper track”

〈q, 2〉 ∼ “q, but we are working on lower track”

e.g. If δM(q, a1) = (p, b, L) then
δM ′(〈q, 1〉, 〈a1, a2〉) = (〈p, 1〉, 〈b, a2〉, R).

Also need transitions for:

• Lower track

• U-turn on hitting endmarker

• Formatting input into “2-tracks”
4

Harvard CS 121 & CSCI E-207 October 18, 2012

Describing Turing Machines

Formal Description

• 7-tuple or state diagram

• Most of the course so far

Implementation Description

• Prose description of tape contents, head movements

• Omit details of states and transition functions (but do
convince yourself that a TM can do what you’re describing!)

• This lecture, next lecture, ps6

High-Level Description

• Starting in a couple of lectures...
5

Harvard CS 121 & CSCI E-207 October 18, 2012

More extensions

• Adding multiple tapes does not increase power of TMs

Variants of TMs, Church-Turing Thesis 2

More extensions

• Adding multiple tapes does not increase power of TMs

b!a

! a a a

!

b

c

q 2-tape TM

(Convention: First tape used for I/O, like standard TM; Second tape is available for scratch work)

• Simulate a k-tape TM by a one-tape TM whose tape is split (conceptually) into 2k tracks:

– k tracks for tape symbols

– k tracks for head position markers (one in each track)

b!a

! a a a

!

b

c

↑

↑

$

(Sipser does different simulation.)

• To simulate one move of the k-tape TM:

• Note that the “equivalence” in ability to compute functions or decide languages does not mean
comparable speed.

e.g. A standard TM can decide L = {w#w : w ∈ Σ∗} in time ∼ |w|2. But there is a
linear-time 2-tape decider.

• Thm: If M is a multitape TM that takes time T (w) when run on input w, then there is a 1-tape
machine M ′ and a constant c such that M ′ simulates M and takes at most c T (w)2 steps on
input w

(Convention: First tape used for I/O, like standard TM; Second
tape is available for scratch work)

6

Harvard CS 121 & CSCI E-207 October 18, 2012

Simulation of multiple tapes

• Simulate a k-tape TM by a one-tape TM whose tape is split
(conceptually) into 2k tracks:

• k tracks for tape symbols

• k tracks for head position markers (one in each track)

Variants of TMs, Church-Turing Thesis 2

More extensions

• Adding multiple tapes does not increase power of TMs

b!a

! a a a

!

b

c

q 2-tape TM

(Convention: First tape used for I/O, like standard TM; Second tape is available for scratch work)

• Simulate a k-tape TM by a one-tape TM whose tape is split (conceptually) into 2k tracks:

– k tracks for tape symbols

– k tracks for head position markers (one in each track)

b!a

! a a a

!

b

c

↑

↑

$

(Sipser does different simulation.)

• To simulate one move of the k-tape TM:

• Note that the “equivalence” in ability to compute functions or decide languages does not mean
comparable speed.

e.g. A standard TM can decide L = {w#w : w ∈ Σ∗} in time ∼ |w|2. But there is a
linear-time 2-tape decider.

• Thm: If M is a multitape TM that takes time T (w) when run on input w, then there is a 1-tape
machine M ′ and a constant c such that M ′ simulates M and takes at most c T (w)2 steps on
input w

(Sipser does different simulation.)

7

Harvard CS 121 & CSCI E-207 October 18, 2012

Simulation steps

• To simulate one move of the k-tape TM:

8

Harvard CS 121 & CSCI E-207 October 18, 2012

Speed of the Simulation

• Note that the “equivalence” in ability to compute functions or
decide languages does not mean comparable speed.

e.g. A standard TM can decide L = {w#w : w ∈ Σ∗} in time
O(|w|2). But there is an O(|w|)-time 2-tape decider.

• Let TM : Σ∗→ N measure the amount of time a decider M
uses on an input. That is, TM(w) is the number of steps TM M

takes to halt on input w.

• General fact about multitape to single-tape slowdown:

Theorem: If M is a multitape TM that takes time T (w) when
run on input w, then there is a 1-tape machine M ′ and a
constant c such that M ′ simulates M and takes at most
c T (w)2 steps on input w.

9

Harvard CS 121 & CSCI E-207 October 18, 2012

Equivalent Formalisms

Many other formalisms for computation are equivalent in power
to the TM formalism:

• TMs with 2-dimensional tapes

• Random-access TMs

• General Grammars

• 2-stack PDAs, 2-counter machines

• Church’s λ-calculus (µ-recursive functions)

• Markov algorithms

• Your favorite programming language (C, Python, OCaml, . . .)

• In any formalism, each formalized algorithm is expressible as
a bit string, number, . . .

10

Harvard CS 121 & CSCI E-207 October 18, 2012

The Church-Turing Thesis

The equivalence of each to the others is a mathematical
theorem.

That these formal models of algorithms capture our
intuitive notion of algorithms is the Church–Turing Thesis.

• Church’s thesis = partial recursive functions,
Turing’s thesis = Turing machines

• The Church–Turing Thesis is an extramathematical
proposition, not subject to formal proof.

11

Harvard CS 121 & CSCI E-207 October 18, 2012

Nondeterministic TMs

• Like TMs, but δ : Q× Γ→ P (Q× Γ× {L,R})

• It mainly makes sense to think of NTMs as recognizers

L(M) = {w : M has some accepting computation on input w}

Example: NTM to recognize
{w : w is the binary notation for a product of two integers ≥ 2}

12

Harvard CS 121 & CSCI E-207 October 18, 2012

NTMs recognize the same languages as TMs

• Given a NTM M , we must construct a TM M ′ that determines,
on input w, whether M has an accepting computation on input
w.

• M ′ systematically tries

→ all one-step computations

→ all two-step computations

→ all three-step computations
...

13

Harvard CS 121 & CSCI E-207 October 18, 2012

Enumerating Computations by Dovetailing

• There is a bounded number of k-step computations, for each k.

(because for each configuration there is only a constant
number of “next” configurations in one step)

• Ultimately M ′ either:

• discovers an accepting computation of M , and accepts itself,

• or searches forever, and does not halt.

14

Harvard CS 121 & CSCI E-207 October 18, 2012

Dovetailing Details

• Suppose that the maximum number of different transitions for
a given (q, a) is C.

• Number those transitions 1, . . . , C (or less)

• Any computation of k steps is determined by a sequence of k
numbers ≤ C (the “nondeterministic choices”).

• How M ′ works: 3 tapes

Variants of TMs, Church-Turing Thesis 3

Nondeterministic TMs

• Like TMs, but δ : Q × Γ → P (Q × Γ × {L,R})

• It mainly makes sense to think of NTMs as recognizers (rather than deciders)

L(M) = {w : M has at least one accepting computation on input w}

e.g. NTM to recognize {ap·q : p, q ≥ 2} (= set of composite numbers)

NTMs recognize the same languages as TMs

• Given a NTM M , we must construct a TM M ′ that determines, on input w, whether M has an
accepting computation on input w.

• M ′ systematically tries

→ all one-step computations

→ all two-step computations

→ all three-step computations
...

In More Detail

• Suppose that the maximum number of different transitions for a given (q, a) is b.

• Number those transitions 1, . . . , b (or less)

• Any computation of k steps is determined by a sequence of k numbers ≤ b (the “nondeterministic
choices”).

• How M ′ works: 3 tapes

1213 % · · · Nondeterministc choices for M ′

Simulated tape of M

Original input to M %#1

#2

#3

15

Harvard CS 121 & CSCI E-207 October 18, 2012

Simulating one step of M

• Each major phase of the simulation by M ′ is to simulate one
finite computation by M , using tape #3 to resolve
nondeterministic ambiguities.

• Between major phases, M ′

• erases tape #2 and copies tape #1 to tape #2

• Replaces string in {1, . . . , C}∗ on tape #3 with the
lexicographically next string to generate the next set of
nondeterministic choices to follow.

• Claim: L(M ′) = L(M)

• Q: Slowdown?

16

