# Harvard CS 121 and CSCI E-207 Lecture 19: Computational Complexity 

Salil Vadhan

November 8, 2012

- Reading: Sipser $\S 7.1$


## Objective of Complexity Theory

- To move from a focus:
- on what it is possible in principle to compute
- to what is feasible to compute given "reasonable" resources
- For us the principle "resource" is time, though it could also be memory ("space") or hardware (switches)


## What is the "speed" of an algorithm?

- Def: A TM $M$ has running time $t: \mathcal{N} \rightarrow \mathcal{N}$ iff for all $n, t(n)$ is the maximum number of steps taken by $M$ over all inputs of length $n$.
$\rightarrow$ implies that $M$ halts on every input
$\rightarrow$ in particular, every decision procedure has a running time
$\rightarrow$ time used as a function of size $n$
$\rightarrow$ worst-case analysis


## Example running times

- Running times are generally increasing functions of $n$

$$
\begin{aligned}
t(n) & =4 n . \\
t(n) & =2 n \cdot\lceil\log n\rceil \\
\lceil x\rceil & =\text { least integ } \\
t(n) & =17 n^{2}+33 . \\
t(n) & =2^{n}+n . \\
t(n) & =2^{2^{n}} .
\end{aligned}
$$

$$
\lceil x\rceil=\text { least integer } \geq x \text { (running times must be integers) }
$$

"Table lookup" provides speedup for finitely many inputs
Claim: For every decidable language $L$ and every constant $k$, there is a TM $M$ that decides $L$ with running time satisfying $t(n)=n$ for all $n \leq k$.

## Proof:

$\Rightarrow$ study behavior only of Turing machines $M$ deciding infinite languages, and only by analyzing the running time $t(n)$ as $n \rightarrow \infty$.

## Why bother measuring TM time, when TMs are so miserably inefficient?

- Answer: Within limits, multitape TMs are a reasonable model for measuring computational speed.
- The trick is to specify the right amount of "slop" when stating that two algorithms are "roughly equivalent".
- Even coarse distinctions can be very informative.


## Complexity Classes

- Def: Let $t: \mathcal{N} \rightarrow \mathcal{R}^{+}$. Then $\operatorname{TIME}(t)$ is the class of languages $L$ that can be decided by some multitape TM with running time $\leq t(n)$.
e.g. $\operatorname{TIME}\left(10^{10} \cdot n\right), \operatorname{TIME}\left(n \cdot 2^{n}\right)$
$\mathcal{R}^{+}=$positive real numbers
- Q: Is it true that with more time you can solve more problems?
i.e., if $g(n)<f(n)$ for all $n$, is $\operatorname{TIME}(g) \subsetneq \operatorname{TIME}(f)$ ?
- A: Not exactly ...


## Linear Speedup Theorem

Let $t: \mathcal{N} \rightarrow \mathcal{R}^{+}$be any function s.t. $t(n) \geq n$ and $0<\varepsilon<1$, Then for every $L \in \operatorname{TIME}(t)$, we also have $L \in \operatorname{TIME}(\varepsilon \cdot t(n)+n)$

- $n=$ time to read input
- Note implied quantification:
$(\forall \mathrm{TM} M)(\forall \varepsilon>0)\left(\exists \mathrm{TM} M^{\prime}\right) M^{\prime}$ is equivalent to $M$ but runs in fraction $\varepsilon$ of the time.
- "Given any TM we can make it run, say, 1,000,000 times faster on all inputs."


## Proof of Linear Speedup

- Let $M$ be a TM deciding $L$ in time $T$.
- A new, faster machine $M^{\prime}$ :
(1) Copies its input to a second tape, in compressed form.

|  | $\left.\begin{array}{ll\|l\|l\|l\|l\|l\|l\|l\|l\|l}\hline a & b & c & b & a & a & b & c & b & \sqcup & \\ & \begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l}\hline a b c & b a a & b c b & \sqcup & \bigsqcup & \sqcup & \sqcup & \end{array}\end{array}\right)$ |
| ---: | :--- |

- (Compression factor $=3$ in this example-actual value TBD at end of proof)
(2) Moves head to beginning of compressed input.
(3) Simulates the operation of $M$ treating all tapes as compressed versions of $M$ 's tapes.


## Analysis of linear speedup

- Let the "compression factor" be $c(c=3$ here), and let $n$ be the length of the input.
- Running time of $M^{\prime}$ :
(1) $n$ steps
(2) $\lceil n / c\rceil$ steps.
- $\lceil x\rceil=$ smallest integer $\geq x$
(3) takes ?? steps.


## How long does the simulation (3) take?

- $M^{\prime}$ remembers in its finite control which of the $c$ "subcells" $M$ is scanning.
- $M^{\prime}$ keeps simulating $c$ steps of $M$ by 8 steps of $M^{\prime}$ :
(1) Look at current cell on either side.
(4 steps to read $3 c$ symbols)
(2) Figure out the next $c$ steps of $M$.
(can't depend on anything outside these $3 c$ subcells)
(3) Update these 3 cells and reposition the head.
(4 steps)


## End of simulation analysis

- It must do this $\lceil t(n) / c\rceil$ times, for a total of $8 \cdot\lceil t(n) / c\rceil$ steps.
- Total of $\leq(10 / c) \cdot t(n)+n$ steps of $M^{\prime}$ for sufficiently large $n$.
- If $c$ is chosen so that $c \geq 10 / \varepsilon$ then $M^{\prime}$ runs in time $\varepsilon \cdot t(n)+n$.


## Implications/Rationalizations of Linear Speedup

- "Throwing hardware at a problem" can speed up any algorithm by any desired constant factor
- E.g. moving from 8 bit $\rightarrow 16$ bit $\rightarrow 32$ bit $\rightarrow 64$ bit parallelism
- Our theory does not "charge" for huge capital expenditures to build big machines, since they can be used for infinitely many problems of unbounded size
- This complexity theory is too weak to be sensitive to multiplicative constants - so we study growth rate


## Growth Rates of Functions

We need a way to compare functions according to how fast they increase not just how large their values are.

Def: For $f: \mathcal{N} \rightarrow \mathcal{R}^{+}, g: \mathcal{N} \rightarrow \mathcal{R}^{+}$, we write $g=O(f)$ if there exist $c, n_{0} \in \mathcal{N}$ such that $g(n) \leq c \cdot f(n)$ for all $n \geq n_{0}$.

- Binary relation: we could write $g=O(f)$ as $g \preccurlyeq f$.
- "If $f$ is scaled up uniformly, it will be above $g$ at all but finitely many points."
- " $g$ grows no faster than $f$."
- Also write $f=\Omega(g)$.


## Examples of Big- $O$ notation

- If $f(n)=n^{2}$ and $g(n)=10^{10} \cdot n$
$g=O(f)$ since $g(n) \leq 10^{10} \cdot f(n)$ for all $n \geq 0$
where $c=10^{10}$ and $n_{0}=0$
- Usually we would write: " $10^{10} \cdot n=O\left(n^{2}\right)$ "
i.e. use an expression to name a function
- By Linear Speedup Theorem, $\operatorname{TIME}(t)$ is the class of languages $L$ that can be decided by some multitape TM with running time $O(t(n))$ (provided $t(n) \geq 1.01 n$ ).


## Examples

- $10^{10} \cdot n=O\left(n^{2}\right)$.
- $1764=O(1)$.

1: The constant function $1(n)=1$ for all $n$.

- $n^{3} \neq O\left(n^{2}\right)$.
- Time $O\left(n^{k}\right)$ for fixed $k$ is considered "fast" ("polynomial time")
- Time $\Omega\left(k^{n}\right)$ is considered "slow" ("exponential time")
- Does this really make sense?


## More Relations

Def: We say that $g=o(f)$ iff for every $\varepsilon>0, \exists n_{0}$ such that $g(n) \leq \varepsilon \cdot f(n)$ for all $n \geq n_{0}$.

- Equivalently, $\lim _{n \rightarrow \infty} g(n) / f(n)=0$.
- " $g$ grows more slowly than $f$."
- Also write $f=\omega(g)$.

Def: We say that $f=\Theta(g)$ iff $f=O(g)$ and $g=O(f)$.

- "g grows at the same rate as $f$ "
- An equivalence relation between functions.
- The equivalence classes are called growth rates.
- Note: If $\lim _{n \rightarrow \infty} g(n) / f(n)=c$ for some $0<c<\infty$, then $f=\Theta(g)$, but the converse is not true. (Why?)


## More Examples

Polynomials (of degree $d$ ):
$f(n)=a_{d} n^{d}+a_{d-1} n^{d-1}+\cdots+a_{1} n+a_{0}$, where $a_{d}>0$.

- $f(n)=O\left(n^{c}\right)$ for $c \geq d$.
- $f(n)=\Theta\left(n^{d}\right)$
- "If $f$ is a polynomial, then lower order terms don't matter to the growth rate of $f$ "
- $f(n)=o\left(n^{c}\right)$ for $c>d$.
- $f(n)=n^{O(1)}$. (This means: $f(n)=n^{g(n)}$ for some function $g(n)$ such that $g(n)=O(1)$.)


## More Examples

Exponential Functions: $g(n)=2^{n^{\Theta(1)}}$.

- Then $f=o(g)$ for any polynomial $f$.
- $2^{n^{\alpha}}=o\left(2^{n^{\beta}}\right)$ if $\alpha<\beta$.

What about $n^{\lg n}=2^{\lg ^{2} n}$ ?
Here $\lg x=\log _{2} x$
Logarithmic Functions:

$$
\log _{a} x=\Theta\left(\log _{b} x\right) \text { for any } a, b>1
$$

## Asymptotic Notation within Expressions

When we use asymptotic notation within an expression, the asymptotic notation is shorthand for an unspecified function satisfying the relation.

- $n^{O(1)}$
- $n^{2}+\Omega(n)$ means $n / 2+g(n)$ for some function $g(n)$ such that $g(n)=\Omega(n)$.
- $2^{(1-o(1)) n}$ means $2^{(1-\epsilon(n)) \cdot g(n)}$ for some function $\epsilon(n)$ such that $\epsilon(n) \rightarrow 0$ as $n \rightarrow \infty$.


## Asymptotic Notation on Both Sides

When we use asymptotic notation on both sides of an equation, it means that for all choices of the unspecified functions in the left-hand side, we get a valid asymptotic relation.

- $n^{2} / 2+O(n)=\Omega\left(n^{2}\right)$ because for every function $f$ such that $f(n)=O(n)$, we have $n^{2} / 2+f(n)=\Omega\left(n^{2}\right)$.
- But it is not true that $\Omega\left(n^{2}\right)=n^{2} / 2+O(n)$.

