
Harvard CS 121 and CSCI E-207
Lecture 19: Computational Complexity

Salil Vadhan

November 8, 2012

• Reading: Sipser §7.1

Harvard CS 121 & CSCI E-207 November 8, 2012

Objective of Complexity Theory

• To move from a focus:

• on what it is possible in principle to compute

• to what is feasible to compute given “reasonable” resources

• For us the principle “resource” is time, though it could also be
memory (“space”) or hardware (switches)

1

Harvard CS 121 & CSCI E-207 November 8, 2012

What is the “speed” of an algorithm?

• Def: A TM M has running time t : N → N iff for all n, t(n) is
the maximum number of steps taken by M over all inputs of
length n.

→ implies that M halts on every input

→ in particular, every decision procedure has a running time

→ time used as a function of size n

→ worst-case analysis

2

Harvard CS 121 & CSCI E-207 November 8, 2012

Example running times

• Running times are generally increasing functions of n

t(n) = 4n.

t(n) = 2n · dlog ne

dxe = least integer ≥ x (running times must be integers)

t(n) = 17n2 + 33.

t(n) = 2n + n.

t(n) = 22n.

3

Harvard CS 121 & CSCI E-207 November 8, 2012

“Table lookup” provides speedup for finitely many inputs

Claim: For every decidable language L and every constant k,
there is a TM M that decides L with running time satisfying
t(n) = n for all n ≤ k.

Proof:

⇒ study behavior only of Turing machines M deciding infinite
languages, and only by analyzing the running time t(n) as
n→∞.

4

Harvard CS 121 & CSCI E-207 November 8, 2012

Why bother measuring TM time,
when TMs are so miserably inefficient?

• Answer: Within limits, multitape TMs are a reasonable model
for measuring computational speed.

• The trick is to specify the right amount of “slop” when stating
that two algorithms are “roughly equivalent”.

• Even coarse distinctions can be very informative.

5

Harvard CS 121 & CSCI E-207 November 8, 2012

Complexity Classes

• Def: Let t : N → R+. Then TIME(t) is the class of languages
L that can be decided by some multitape TM with running time
≤ t(n).

e.g. TIME(1010 · n),TIME(n · 2n)

R+ = positive real numbers

• Q: Is it true that with more time you can solve more problems?

i.e., if g(n) < f(n) for all n, is TIME(g) (TIME(f)?

• A: Not exactly . . .

6

Harvard CS 121 & CSCI E-207 November 8, 2012

Linear Speedup Theorem

Let t : N → R+ be any function s.t. t(n) ≥ n and 0 < ε < 1,
Then for every L ∈ TIME(t), we also have
L ∈ TIME(ε · t(n) + n)

• n = time to read input

• Note implied quantification:

(∀ TM M)(∀ε > 0)(∃ TM M ′) M ′ is equivalent to M but runs
in fraction ε of the time.

• “Given any TM we can make it run, say, 1,000,000 times faster
on all inputs.”

7

Harvard CS 121 & CSCI E-207 November 8, 2012

Proof of Linear Speedup

• Let M be a TM deciding L in time T .

• A new, faster machine M ′:

(1) Copies its input to a second tape, in compressed form.

Computational Complexity Theory 3

Proof of Linear Speedup

• Let M be a TM deciding L in time T . Assume, for simplicity, that M has 1 tape.

• A new, faster machine M ′:

(1) Copies its input to a work tape, compresses and reverses it.

(2) Copies it back to the first tape in order.

a b c b a a b c b !

abc baa bcb ! ! ! !

⇒

(3) Simulates the operation of M using the compressed tape.

• Let the “compression factor” be c (c = 3 here), and let n be the length of the input.

• Running time of M ′:

(1) takes n + #n/c$ steps. (note that #n/c$ = length of compressed tape)

(2) takes 2#n/c$ steps.

(3) takes ?? steps.

N.B. (1) and (2) take ≤ 2n steps if c ≥ 4.

How long does the simulation (3) take?

• M ′ remembers in its finite control which of the c “subcells” M is scanning.

• M ′ keeps simulating c steps of M by 12 steps of M ′:

(1) Look at current cell on either side. (4 steps to read 3c symbols)

(2) Figure out the next c steps of M . (can’t depend on anything outside these 3c subcells)

(3) Update these 3 cells and reposition the head. (3 writes and 5 moves)

• It must do this #t(n)/c$ times, for a total of 12 · #t(n)/c$ steps.

• Total of ≤ (13/c) · t(n) + 2n steps of M ′.

• If c is chosen so that c ≥ 13/ε then M ′ runs in time ε·t(n)+2n.

• (Compression factor = 3 in this example—actual value
TBD at end of proof)

(2) Moves head to beginning of compressed input.

(3) Simulates the operation of M treating all tapes as
compressed versions of M ’s tapes.

8

Harvard CS 121 & CSCI E-207 November 8, 2012

Analysis of linear speedup

• Let the “compression factor” be c (c = 3 here), and let n be the
length of the input.

• Running time of M ′:

(1) n steps

(2) dn/ce steps.

· dxe = smallest integer ≥ x

(3) takes ?? steps.

9

Harvard CS 121 & CSCI E-207 November 8, 2012

How long does the simulation (3) take?

• M ′ remembers in its finite control which of the c “subcells” M
is scanning.

• M ′ keeps simulating c steps of M by 8 steps of M ′:

(1) Look at current cell on either side.

(4 steps to read 3c symbols)

(2) Figure out the next c steps of M .

(can’t depend on anything outside these 3c subcells)

(3) Update these 3 cells and reposition the head.

(4 steps)

10

Harvard CS 121 & CSCI E-207 November 8, 2012

End of simulation analysis

• It must do this dt(n)/ce times, for a total of 8 · dt(n)/ce steps.

• Total of ≤ (10/c) · t(n) + n steps of M ′ for sufficiently large n.

• If c is chosen so that c ≥ 10/ε then M ′ runs in time ε · t(n) + n.

11

Harvard CS 121 & CSCI E-207 November 8, 2012

Implications/Rationalizations of Linear Speedup

• “Throwing hardware at a problem” can speed up any algorithm
by any desired constant factor

• E.g. moving from 8 bit→ 16 bit→ 32 bit→ 64 bit parallelism

• Our theory does not “charge” for huge capital expenditures to
build big machines, since they can be used for infinitely many
problems of unbounded size

• This complexity theory is too weak to be sensitive to
multiplicative constants — so we study growth rate

12

Harvard CS 121 & CSCI E-207 November 8, 2012

Growth Rates of Functions

We need a way to compare functions according to how fast
they increase not just how large their values are.

Def: For f : N → R+, g : N → R+, we write g = O(f) if there
exist c, n0 ∈ N such that g(n) ≤ c · f(n) for all n ≥ n0.

• Binary relation: we could write g = O(f) as g 4 f .

• “If f is scaled up uniformly, it will be above g at all but finitely
many points.”

• “g grows no faster than f .”

• Also write f = Ω(g).

13

Harvard CS 121 & CSCI E-207 November 8, 2012

Examples of Big-O notation

• If f(n) = n2 and g(n) = 1010 · n

g = O(f) since g(n) ≤ 1010 · f(n) for all n ≥ 0

where c = 1010 and n0 = 0

• Usually we would write: “1010 · n = O(n2)”

i.e. use an expression to name a function

• By Linear Speedup Theorem, TIME(t) is the class of
languages L that can be decided by some multitape TM with
running time O(t(n)) (provided t(n) ≥ 1.01n).

14

Harvard CS 121 & CSCI E-207 November 8, 2012

Examples

• 1010 · n = O(n2).

• 1764 = O(1).

1: The constant function 1(n) = 1 for all n.

• n3 6= O(n2).

• Time O(nk) for fixed k is considered “fast” (“polynomial time”)

• Time Ω(kn) is considered “slow” (“exponential time”)

• Does this really make sense?

15

Harvard CS 121 & CSCI E-207 November 8, 2012

More Relations

Def: We say that g = o(f) iff for every ε > 0, ∃n0 such that
g(n) ≤ ε · f(n) for all n ≥ n0.

• Equivalently, limn→∞ g(n)/f(n) = 0.

• “g grows more slowly than f .”

• Also write f = ω(g).

Def: We say that f = Θ(g) iff f = O(g) and g = O(f).

• “g grows at the same rate as f ”

• An equivalence relation between functions.

• The equivalence classes are called growth rates.

• Note: If limn→∞ g(n)/f(n) = c for some 0 < c <∞, then
f = Θ(g), but the converse is not true. (Why?)

16

Harvard CS 121 & CSCI E-207 November 8, 2012

More Examples

Polynomials (of degree d):

f(n) = adn
d + ad−1n

d−1 + · · ·+ a1n+ a0, where ad > 0.

• f(n) = O(nc) for c ≥ d.

• f(n) = Θ(nd)

• “If f is a polynomial, then lower order terms don’t matter to
the growth rate of f ”

• f(n) = o(nc) for c > d.

• f(n) = nO(1). (This means: f(n) = ng(n) for some function
g(n) such that g(n) = O(1).)

17

Harvard CS 121 & CSCI E-207 November 8, 2012

More Examples

Exponential Functions: g(n) = 2n
Θ(1)

.

• Then f = o(g) for any polynomial f .

• 2n
α

= o(2n
β
) if α < β.

What about nlgn = 2lg2 n?

Here lg x = log2 x

Logarithmic Functions:

loga x = Θ(logb x) for any a, b > 1

18

Harvard CS 121 & CSCI E-207 November 8, 2012

Asymptotic Notation within Expressions

When we use asymptotic notation within an expression, the
asymptotic notation is shorthand for an unspecified function
satisfying the relation.

• nO(1)

• n2 + Ω(n) means n/2 + g(n) for some function g(n) such that
g(n) = Ω(n).

• 2(1−o(1))n means 2(1−ε(n))·g(n) for some function ε(n) such
that ε(n)→ 0 as n→∞.

19

Harvard CS 121 & CSCI E-207 November 8, 2012

Asymptotic Notation on Both Sides

When we use asymptotic notation on both sides of an
equation, it means that for all choices of the unspecified
functions in the left-hand side, we get a valid asymptotic
relation.

• n2/2 +O(n) = Ω(n2) because for every function f such that
f(n) = O(n), we have n2/2 + f(n) = Ω(n2).

• But it is not true that Ω(n2) = n2/2 +O(n).

20

