
Harvard CS 121 and CSCI E-207
Lecture 24: Cook–Levin Theorem

& More on NP

Salil Vadhan

November 29, 2012

Harvard CS 121 & CSCI E-207 November 29, 2012

Cook-Levin Theorem: SAT is NP-complete

Proof:

• Already know SAT ∈ NP, so only need to show SAT is
NP-hard.

• Let L be any language in NP. Let M be a NTM that decides L
in time nk.
We define a polynomial-time reduction

fL : inputs 7→ formulas

such that for every w,

M accepts input w iff fL(w) is satisfiable
1

Harvard CS 121 & CSCI E-207 November 29, 2012

Reduction via “computation histories”

Proof Idea: satisfying assignments of fL(w)↔ accepting
computations of M on w

Describe computations of M by boolean variables:

• If n = |w|, then any computation of M on w has at most nk

configurations.

• Each configuration is an element of Cnk
, where

C = Q ∪ Γ ∪ {#}
(mark left and right ends with {#}).

 computation depicted by nk × nk “tableau” of members of C.

• Represent contents of cell (i, j) by |C| boolean variables
{xi,j,s : s ∈ C}, where xi,j,s = 1 means “cell (i, j) contains s”.

• 0 ≤ i, j < nk, so |C| · n2k boolean variables in all
2

Harvard CS 121 & CSCI E-207 November 29, 2012

Subformulas that verify the computation

Express conditions for an accepting computation on w
by boolean formulas:

• φcell =

“for each (i, j), there is exactly one s ∈ C such that xi,j,s = 1”.

• φstart = “first row equals start configuration on w”

• φaccept = “last row is an accept configuration on w”

• φmove = “every 2× 3 window is consistent with the transition
function of M ”

3

Harvard CS 121 & CSCI E-207 November 29, 2012

Completing the proof

Claim: Each of above can be expressed by a formula of size
of size O((nk)2) = O(n2k), and can be constructed in
polynomial time from w.

Claim: M has an accepting computation on w if and only if
fL(w) = φcell ∧ φstart ∧ φaccept ∧ φmove has a satisfying
assignment.

Thus w 7→ fL(w) is a polynomial-time reduction from L to SAT.

Since above holds for every L ∈ NP, SAT is NP-hard, as
desired. �

4

Harvard CS 121 & CSCI E-207 November 29, 2012

5

Harvard CS 121 & CSCI E-207 November 29, 2012

6

Harvard CS 121 & CSCI E-207 November 29, 2012

7

Harvard CS 121 & CSCI E-207 November 29, 2012

co-NP

Recall that co-NP = {L : L ∈ NP}.

Some co-NP-complete problems:

• Complement of any NP-complete problem.

• TAUTOLOGY = {ϕ : ∀a ϕ(a) = 1} (even for 3-DNF formulas
ϕ).

Believed that NP 6= co-NP, P 6= NP ∩ co-NP.

8

Harvard CS 121 & CSCI E-207 November 29, 2012

Between P and NP-complete

Theorem: If P 6= NP, then there are NP languages that are
neither in P nor NP-complete.

Proof: beyond the scope of this course.

Some natural candidates:

• FACTORING (when described as a language)

• NASH EQUILIBRIUM

• GRAPH ISOMORPHISM

• Any problem in NP ∩ co-NP for which we don’t know a
poly-time algorithm.

9

Harvard CS 121 & CSCI E-207 November 29, 2012

The World If P 6= NP

P
NP co-NP

NP-complete co-NP-complete

Recursive r.e. co-r.e.

10

Harvard CS 121 & CSCI E-207 November 29, 2012

The World If P = NP

P =

NP =

co-NP =

NP-complete

Recursive

r.e. co-r.e.

11

