Harvard CS 121 and CSCI E-207 Lecture 6: Regular Languages and Countability

Salil Vadhan

September 20, 2012

Reading: Sipser, $\S 1.3$ and "The Diagonalization Method," pages 174-178 (from just before Definition 4.12 until just before Corollary 4.18).

Converting Finite Automata to Regular Expressions

Theorem: For every regular language L, there is a regular expression R such that $L(R)=L$.

Proof:

Define generalized NFAs (GNFAs) (of interest only for this proof)

- Transitions labelled by regular expressions (rather than symbols).
- One start state $q_{\text {start }}$ and only one accept state $q_{\text {accept }}$.
- Exactly one transition from q_{i} to q_{j} for every two states $q_{i} \neq q_{\text {accept }}$ and $q_{j} \neq q_{\text {start }}$ (including self-loops).

NFAs to GNFAs

Lemma: For every NFA N, there is an equivalent GNFA G.

- Add new start state, new accept state. Transitions?
- If multiple transitions between two states, combine. How?
- If no transition between two states, add one. With what label?

GNFAs to REs

Lemma: For every GNFA G, there is an equivalent RE R.

- By induction on the number of states k of G.
- Base case: $k=2$. Set R to be the label of the transition from $q_{\text {start }}$ to $q_{\text {accept }}$.
- Inductive Hypothesis: Suppose every GNFA G of k or fewer states has an equivalent RE (where $k \geq 2$).
- Induction Step: Given a $(k+1)$-state GNFA G, we will construct an equivalent k-state GNFA G^{\prime}.

Rip: Remove a state q_{r} (other than $q_{\text {start }}, q_{\text {accept }}$).
Repair: Augment labels on all transitions $q_{i} \rightarrow q_{j}$ to also include strings that could have followed the transitions $q_{i} \rightarrow q_{r} \rightarrow q_{j}$.

Ripping and repairing GNFAs: details

Given a $(k+1)$-state GNFA G, we construct an equivalent k-state GNFA G^{\prime} as follows:

Rip: Remove a state q_{r} (other than $q_{\text {start }}, q_{\text {accept }}$).
Repair: For every two states $q_{i} \notin\left\{q_{\text {accept }}, q_{r}\right\}$,
$q_{j} \notin\left\{q_{\text {start }}, q_{r}\right\}$, let $R_{i, r}, R_{r, r}, R_{r, j}$ be REs on transitions $q_{i} \rightarrow q_{j}, q_{i} \rightarrow q_{r}, q_{r} \rightarrow q_{r}$ and $q_{r} \rightarrow q_{j}$ in G, respectively.

In G^{\prime}, put RE $R_{i j} \cup R_{i, r} R_{r, r}^{*} R_{r, j}$ on transition $q_{i} \rightarrow q_{j}$.
Argue that $L\left(G^{\prime}\right)=L(G)$, which generated by a regular expression by IH.

Note that this proof is also constructive.

Example conversion of an NFA to a RE

Example conversion of an NFA to a RE (cont.)

Examples of Regular Languages

- $\left\{w \in\{a, b\}^{*}:|w|\right.$ even \& every 3rd symbol is an $\left.a\right\}$
- $\left\{w \in\{a, b\}^{*}:\right.$ There are not $7 a$'s or $7 b$'s in a row $\}$
- $\left\{w \in\{a, b\}^{*}: w\right.$ has both an even number of a 's and an even number of b 's $\}$
- Are there non-regular languages???

Goal: Existence of Non-Regular Languages

Intuition:

- Every regular language can be described by a finite string (namely a regular expression).
- To specify an arbitrary language requires an infinite amount of information.

For example, an infinite sequence of bits would suffice:
Σ^{*} has a lexicographic ordering, and the i 'th bit of an infinite sequence specifying a language would say whether or not the i 'th string is in the language.
\Rightarrow Some language must not be regular.
How to formalize?

Cardinality

A set S is

- finite if there is a bijection $\{1, \ldots, n\} \leftrightarrow S$ for some $n \geq 0$

In that case, we say $|S|=n$
($|S|$ is the size or cardinality of S)
\rightsquigarrow Is the empty set finite?

- infinite if it is not finite

$$
\text { So } \mathcal{N}=\{0,1,2, \ldots\} \text { is infinite }
$$

\rightsquigarrow What about $\{\mathcal{N}\}$?

Countability

A set S is

- countably infinite if there is a bijection $f: \mathcal{N} \leftrightarrow S$

This means that S can be "enumerated," i.e. listed as $\left\{s_{0}, s_{1}, s_{2}, \ldots\right\}$ where $s_{i}=f(i)$ for $i=0,1,2,3, \ldots$
So \mathcal{N} itself is countably infinite
So is \mathcal{Z} (integers) since $\mathcal{Z}=\{0,-1,1,-2,2, \ldots\}$
Q: What is f ?

- countable if S is finite or countably infinite
- uncountable if it is not countable

Facts about Infinite Sets

- Proposition: The union of 2 countably infinite sets is countably infinite.

$$
\text { If } A=\left\{a_{0}, a_{1}, \ldots\right\}, B=\left\{b_{0}, b_{1}, \ldots\right\}
$$

Then $A \cup B=C=\left\{c_{0}, c_{1}, \ldots\right\}$
where $c_{i}= \begin{cases}a_{i / 2} & \text { if } i \text { is even } \\ b_{(i-1) / 2} \text { if } i \text { is odd }\end{cases}$
"Hilbert's Grand Hotel Paradox"

Q: If we are being fussy, there is a small problem with this argument. What is it?

- Proposition: If there is an onto function $f: \mathcal{N} \rightarrow S$, then S is countable.

