Harvard CS 121 and CSCI E-207 Lecture 6: Regular Languages and Countability

Salil Vadhan

September 20, 2012

Reading: Sipser, §1.3 and "The Diagonalization Method," pages 174–178 (from just before Definition 4.12 until just before Corollary 4.18).

Converting Finite Automata to Regular Expressions

<u>**Theorem</u></u>: For every regular language L, there is a regular expression R such that L(R) = L.</u>**

Proof:

Define generalized NFAs (GNFAs) (of interest only for this proof)

- Transitions labelled by regular expressions (rather than symbols).
- One start state q_{start} and only one accept state q_{accept} .
- Exactly one transition from q_i to q_j for every two states $q_i \neq q_{\text{accept}}$ and $q_j \neq q_{\text{start}}$ (including self-loops).

NFAs to GNFAs

Lemma: For every NFA N, there is an equivalent GNFA G.

• Add new start state, new accept state. Transitions?

• If multiple transitions between two states, combine. How?

• If no transition between two states, add one. With what label?

GNFAs to REs

Lemma: For every GNFA G, there is an equivalent RE R.

- By induction on the number of states k of G.
- <u>Base case</u>: k = 2. Set R to be the label of the transition from q_{start} to q_{accept} .
- Inductive Hypothesis: Suppose every GNFA G of k or fewer states has an equivalent RE (where $k \ge 2$).
- Induction Step: Given a (k + 1)-state GNFA G, we will construct an equivalent k-state GNFA G'.

Rip: Remove a state q_r (other than q_{start} , q_{accept}).

Repair: Augment labels on all transitions $q_i \rightarrow q_j$ to also include strings that could have followed the transitions $q_i \rightarrow q_r \rightarrow q_j$.

Ripping and repairing GNFAs: details

Given a (k + 1)-state GNFA G, we construct an equivalent k-state GNFA G' as follows:

Rip: Remove a state q_r (other than q_{start} , q_{accept}).

Repair: For every two states $q_i \notin \{q_{\text{accept}}, q_r\}$, $q_j \notin \{q_{\text{start}}, q_r\}$, let $R_{i,r}$, $R_{r,r}$, $R_{r,j}$ be REs on transitions $q_i \rightarrow q_j$, $q_i \rightarrow q_r$, $q_r \rightarrow q_r$ and $q_r \rightarrow q_j$ in G, respectively. In G', put RE $R_{ij} \cup R_{i,r}R_{r,r}^*R_{r,j}$ on transition $q_i \rightarrow q_j$. Argue that L(G') = L(G), which generated by a regular

expression by IH.

Note that this proof is also constructive.

Example conversion of an NFA to a RE

Example conversion of an NFA to a RE (cont.)

Examples of Regular Languages

• $\{w \in \{a, b\}^* : |w| \text{ even & every 3rd symbol is an } a\}$

• $\{w \in \{a, b\}^*$: There are not 7 *a*'s or 7 *b*'s in a row $\}$

• $\{w \in \{a, b\}^* : w \text{ has both an even number of } a$'s and an even number of b's $\}$

• Are there non-regular languages???

Goal: Existence of Non-Regular Languages

Intuition:

- Every regular language can be described by a finite string (namely a regular expression).
- To specify an arbitrary language requires an infinite amount of information.

For example, an infinite sequence of bits would suffice: Σ^* has a lexicographic ordering, and the *i*'th bit of an infinite sequence specifying a language would say whether or not the *i*'th string is in the language.

 \Rightarrow Some language must not be regular.

How to formalize?

Cardinality

A set \boldsymbol{S} is

• <u>finite</u> if there is a bijection $\{1, \ldots, n\} \leftrightarrow S$ for some $n \ge 0$

In that case, we say |S| = n

 $(|S| \text{ is the } \underline{\text{size}} \text{ or cardinality of } S)$

- \rightsquigarrow Is the empty set finite?
- infinite if it is not finite

So $\mathcal{N} = \{0, 1, 2, ...\}$ is infinite

 \rightsquigarrow What about $\{\mathcal{N}\}$?

Countability

A set \boldsymbol{S} is

• countably infinite if there is a bijection $f: \mathcal{N} \leftrightarrow S$

This means that S can be "enumerated," i.e. listed as $\{s_0, s_1, s_2, \ldots\}$ where $s_i = f(i)$ for $i = 0, 1, 2, 3, \ldots$

So ${\mathcal N}$ itself is countably infinite

So is \mathcal{Z} (integers) since $\mathcal{Z} = \{0, -1, 1, -2, 2, \ldots\}$

Q: What is f?

- <u>countable</u> if S is finite or countably infinite
- <u>uncountable</u> if it is not countable

Facts about Infinite Sets

• **Proposition:** The union of 2 countably infinite sets is countably infinite.

If
$$A = \{a_0, a_1, \ldots\}, B = \{b_0, b_1, \ldots\}$$

Then $A \cup B = C = \{c_0, c_1, \ldots\}$
where $c_i = \begin{cases} a_{i/2} & \text{if } i \text{ is even} \\ b_{(i-1)/2} & \text{if } i \text{ is odd} \end{cases}$
"Hilbert's Grand Hotel Paradox"

Q: If we are being fussy, there is a small problem with this argument. What is it?

• **Proposition:** If there is an <u>onto</u> function $f : \mathcal{N} \to S$, then S is countable.