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Converting Finite Automata to Regular Expressions

Theorem: For every regular language L, there is a regular
expression R such that L(R) = L.

Proof:

Define generalized NFAs (GNFAs) (of interest only for this
proof)

• Transitions labelled by regular expressions (rather than
symbols).

• One start state qstart and only one accept state qaccept.

• Exactly one transition from qi to qj for every two states
qi 6= qaccept and qj 6= qstart (including self-loops).
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NFAs to GNFAs

Lemma: For every NFA N , there is an equivalent GNFA G.

• Add new start state, new accept state. Transitions?

• If multiple transitions between two states, combine. How?

• If no transition between two states, add one. With what
label?
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GNFAs to REs

Lemma: For every GNFA G, there is an equivalent RE R.

• By induction on the number of states k of G.

• Base case: k = 2. Set R to be the label of the transition from
qstart to qaccept.

• Inductive Hypothesis: Suppose every GNFA G of k or fewer
states has an equivalent RE (where k ≥ 2).

• Induction Step: Given a (k + 1)-state GNFA G, we will
construct an equivalent k-state GNFA G′.

Rip: Remove a state qr (other than qstart, qaccept).

Repair: Augment labels on all transitions qi→ qj to also
include strings that could have followed the transitions
qi→ qr → qj.
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Ripping and repairing GNFAs: details

Given a (k + 1)-state GNFA G, we construct an equivalent
k-state GNFA G′ as follows:

Rip: Remove a state qr (other than qstart, qaccept).

Repair: For every two states qi /∈ {qaccept, qr},
qj /∈ {qstart, qr}, let Ri,r, Rr,r, Rr,j be REs on transitions
qi→ qj, qi→ qr, qr → qr and qr → qj in G, respectively.

In G′, put RE Rij ∪Ri,rR
∗
r,rRr,j on transition qi→ qj.

Argue that L(G′) = L(G), which generated by a regular
expression by IH.

Note that this proof is also constructive.
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Example conversion of an NFA to a RE
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Example conversion of an NFA to a RE (cont.)
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Examples of Regular Languages

• {w ∈ {a, b}∗ : |w| even & every 3rd symbol is an a}

• {w ∈ {a, b}∗ : There are not 7 a’s or 7 b’s in a row}

• {w ∈ {a, b}∗ : w has both an even number of a’s and an even
number of b’s}

• Are there non-regular languages???
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Goal: Existence of Non-Regular Languages

Intuition:

• Every regular language can be described by a finite string
(namely a regular expression).

• To specify an arbitrary language requires an infinite amount
of information.

For example, an infinite sequence of bits would suffice:
Σ∗ has a lexicographic ordering, and the i’th bit of an
infinite sequence specifying a language would say whether
or not the i’th string is in the language.

⇒ Some language must not be regular.

How to formalize?
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Cardinality

A set S is

• finite if there is a bijection {1, . . . , n} ↔ S

for some n ≥ 0

In that case, we say |S| = n

(|S| is the size or cardinality of S)

 Is the empty set finite?

• infinite if it is not finite

So N = {0,1,2,. . .} is infinite

 What about {N}?
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Countability

A set S is

• countably infinite if there is a bijection f : N ↔ S

This means that S can be “enumerated,” i.e. listed as
{s0, s1, s2, . . .} where si = f(i) for i = 0, 1, 2, 3, . . .

So N itself is countably infinite

So is Z (integers) since Z = {0,−1, 1,−2, 2, . . .}

Q: What is f?

• countable if S is finite or countably infinite

• uncountable if it is not countable
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Facts about Infinite Sets

• Proposition: The union of 2 countably infinite sets is
countably infinite.

If A = {a0, a1, . . .}, B = {b0, b1, . . .}

Then A ∪B = C = {c0, c1, . . .}

where ci =

{
ai/2 if i is even
b(i−1)/2 if i is odd

“Hilbert’s Grand Hotel Paradox”

Q: If we are being fussy, there is a small problem with this
argument. What is it?

• Proposition: If there is an onto function f : N → S, then S is
countable.
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