
Harvard CS 121 and CSCI E-207
Lecture 15: Recognizability & Decidability

Salil Vadhan
(lecture given by Bo Waggoner)

October 25, 2012

• Reading: Sipser §3.2,§3.3,§4.1.



Harvard CS 121 & CSCI E-207 October 25, 2012

Nondeterministic TMs

• Like TMs, but δ : Q× Γ→ P (Q× Γ× {L,R})

• It mainly makes sense to think of NTMs as recognizers

L(M) = {w : M has some accepting computation on input w}

Example: NTM to recognize
{w : w is the binary notation for a product of two integers ≥ 2}

1



Harvard CS 121 & CSCI E-207 October 25, 2012

NTMs recognize the same languages as TMs

• Given a NTM M , we must construct a TM M ′ that determines,
on input w, whether M has an accepting computation on input
w.

• M ′ systematically tries

→ all one-step computations

→ all two-step computations

→ all three-step computations
...

2



Harvard CS 121 & CSCI E-207 October 25, 2012

Enumerating Computations by Dovetailing

• There is a bounded number of k-step computations, for each k.

(because for each configuration there is only a constant
number of “next” configurations in one step)

• Ultimately M ′ either:

• discovers an accepting computation of M , and accepts itself,

• or searches forever, and does not halt.

3



Harvard CS 121 & CSCI E-207 October 25, 2012

Dovetailing Details

• Suppose that the maximum number of different transitions for
a given (q, a) is C.

• Number those transitions 1, . . . , C (or less)

• Any computation of k steps is determined by a sequence of k
numbers ≤ C (the “nondeterministic choices”).

• How M ′ works: 3 tapes

Variants of TMs, Church-Turing Thesis 3

Nondeterministic TMs

• Like TMs, but δ : Q × Γ → P (Q × Γ × {L,R})

• It mainly makes sense to think of NTMs as recognizers (rather than deciders)

L(M) = {w : M has at least one accepting computation on input w}

e.g. NTM to recognize {ap·q : p, q ≥ 2} (= set of composite numbers)

NTMs recognize the same languages as TMs

• Given a NTM M , we must construct a TM M ′ that determines, on input w, whether M has an
accepting computation on input w.

• M ′ systematically tries

→ all one-step computations

→ all two-step computations

→ all three-step computations
...

In More Detail

• Suppose that the maximum number of different transitions for a given (q, a) is b.

• Number those transitions 1, . . . , b (or less)

• Any computation of k steps is determined by a sequence of k numbers ≤ b (the “nondeterministic
choices”).

• How M ′ works: 3 tapes

1213 % · · · Nondeterministc choices for M ′

Simulated tape of M

Original input to M %#1

#2

#3

4



Harvard CS 121 & CSCI E-207 October 25, 2012

Simulating one step of M

• Each major phase of the simulation by M ′ is to simulate one
finite computation by M , using tape #3 to resolve
nondeterministic ambiguities.

• Between major phases, M ′

• erases tape #2 and copies tape #1 to tape #2

• Replaces string in {1, . . . , C}∗ on tape #3 with the
lexicographically next string to generate the next set of
nondeterministic choices to follow.

• Claim: L(M ′) = L(M)

• Q: Slowdown?

5



Harvard CS 121 & CSCI E-207 October 25, 2012

Another TM Variant: Enumerators

Def: A TM M enumerates a language L if M , when started
from a blank tape, runs forever and “emits” all and only the
strings in L.

(For example, by writing the string on a special tape and
passing through a designated state.)

More Turing-recognizability, Undecidability 1

• Reading: Sipser Ch. 5 (plus some of §3.2,§4.2)

On Turing-Recognizability

• Definition: L is co-Turing-recognizable iff L is Turing-recognizable.

• Theorem: L is decidable iff L and L are both Turing-recognizable.

Proof:

⇒ Easy.

⇐ If L and L are both Turing-recognizable then here is a decider for L:

Given w ∈ Σ∗, run recognizers for L and L simultaneously (on alternate steps, for
example).

Since either w ∈ L or w ∈ L, one of the recognizers will halt eventually.

• Corollary: ATM, HALTTM not Turing-recognizable.

Enumerators

Def: A TM M enumerates a language L if M , when started from a blank tape, runs forever and
“emits” all and only the strings in L.

(For example, by writing the string on a special tape and passing through a designated state.)

M

Work Tape

Output Tape

Theorem: L is Turing-recognizable iff L is enumerated by some TM.

Proof:

(⇒) Suppose L(M) = L. We want to construct a TM M ′ that enumerates L.

M ′ dovetails all of the computations by M :

1. Do 1 step of M ’s computation on w0

2. Do 2 steps of M on w0 and w1

3. Do 3 steps on each of w0, w1, w2

where w0, w1, . . . = lexicographic enumeration of Σ∗.

Outputting any strings wi whose computations have accepted.

6



Harvard CS 121 & CSCI E-207 October 25, 2012

Recognizable ≡ enumerable

Theorem: L is Turing-recognizable iff L is enumerated by
some TM.
Proof:

(⇒) Suppose L(M) = L. We want to construct a TM M ′ that
enumerates L.

M ′ dovetails all of the computations by M :

1. Do 1 step of M ’s computation on w0

2. Do 2 steps of M on w0 and w1

3. Do 3 steps on each of w0, w1, w2

where w0, w1, . . . = lexicographic enumeration of Σ∗.

Outputting any strings wi whose computations have
accepted.

7



Harvard CS 121 & CSCI E-207 October 25, 2012

Recognizable ≡ enumerable, finis

(⇐)

• The Turing-decidable sets are often called recursive because
they can be computed using certain systems of recursive
equations, rather than via TMs.

• The Turing-recognizable sets are usually called recursively
enumerable, i.e. “computably enumerable,” due to the above
characterization in terms of enumerators.

• Fact (ps7): L is decidable iff it is enumerable in lexicographic
order.

8



Harvard CS 121 & CSCI E-207 October 25, 2012

Three basic facts on the recursive vs. r.e. languages

1. If L is recursive, then L is r.e.

Proof:

2. If L is recursive then so is L.

Proof:

3. L is recursive if and only if both L and L are r.e.

Proof:

9



Harvard CS 121 & CSCI E-207 October 25, 2012

Asking questions about arbitrary finite automata

• Proposition: Every regular language is decidable.

Proof: (By “coding” a DFA as a TM.)

10



Harvard CS 121 & CSCI E-207 October 25, 2012

What if the DFA D is part of the input?

• That is, can we design a single TM that, given two inputs, D
and w, decides whether D accepts w?
• The TM needs to use a fixed alphabet & state set for all

inputs D,w.

• Q: How to represent D = (Q,ΣD, δ, q0, F ) and w?
List each component of the 5-tuple, separated by |’s.

• Represent elements of Q as binary strings over {0, 1},
separated by ,’s.

• Represent elements of ΣD as binary strings over {0, 1},
separated by ,’s.

• Represent δ : Q× ΣD → Q as a sequence of triples (q, σ, q′),
separated by ,’s, etc.

We denote the encoding of D and w as 〈D,w〉.
11



Harvard CS 121 & CSCI E-207 October 25, 2012

A “Universal” algorithm for deciding regular languages

• Proposition: ADFA = {〈D,w〉 : D a DFA that accepts w} is
decidable.

Proof sketch:

• First check that input is of proper form.

• Then simulate D on w. Implementation on a multitape TM:

• Tape 2: String w with head at current position (or to be
precise, its representation).

• Tape 3: Current state q of D (i.e., its representation).

• Could work with other encodings, e.g. transition function as a
matrix rather than list of triples.

12



Harvard CS 121 & CSCI E-207 October 25, 2012

Representation independence

General point: Notions of computability (e.g. decidability and
recognizability) are independent of data representations.

• A TM can convert any reasonable encoding to any other
reasonable encoding.

• We will use 〈·〉 to mean “any reasonable encoding”.

• We’ll need to revisit representation issues again when we
discuss computational speed.

• For the moment when we are interested only in whether
problems are decidable, undecidable, recognizable, etc., so we
can be content knowing that there is some representation on
which an algorithm could work.

13


