Harvard CS 121 and CSCI E-207 Lecture 15: Recognizability & Decidability

Salil Vadhan (lecture given by Bo Waggoner)

October 25, 2012

• Reading: Sipser §3.2,§3.3,§4.1.

Nondeterministic TMs

- Like TMs, but $\delta: Q \times \Gamma \to P(Q \times \Gamma \times \{L, R\})$
- It mainly makes sense to think of NTMs as recognizers

 $L(M) = \{w : M \text{ has some accepting computation on input } w\}$

Example: NTM to recognize $\{w : w \text{ is the binary notation for a product of two integers } \geq 2\}$

NTMs recognize the same languages as TMs

- Given a NTM *M*, we must construct a TM *M'* that determines, on input *w*, whether *M* has an accepting computation on input *w*.
- *M'* systematically tries
 - \rightarrow all one-step computations
 - \rightarrow all two-step computations
 - \rightarrow all three-step computations

i

Enumerating Computations by Dovetailing

- There is a bounded number of k-step computations, for each k.
 (because for each configuration there is only a constant number of "next" configurations in one step)
- Ultimately M' either:
 - discovers an accepting computation of M, and accepts itself,
 - or searches forever, and does not halt.

Dovetailing Details

- Suppose that the maximum number of different transitions for a given (q, a) is C.
- Number those transitions $1, \ldots, C$ (or less)
- Any computation of k steps is determined by a sequence of k numbers $\leq C$ (the "nondeterministic choices").
- How M' works: 3 tapes
 - #1Original input to $M \sqcup$
 - Simulated tape of M#2

 $1213 \sqcup \cdots$ Nondeterministc choices for M'

Simulating one step of M

- Each major phase of the simulation by *M*' is to simulate one finite computation by *M*, using tape #3 to resolve nondeterministic ambiguities.
- Between major phases, M'
 - erases tape #2 and copies tape #1 to tape #2
 - Replaces string in $\{1, \ldots, C\}^*$ on tape #3 with the lexicographically next string to generate the next set of nondeterministic choices to follow.
- <u>Claim</u>: L(M') = L(M)
- Q: Slowdown?

Another TM Variant: Enumerators

Def: A TM M <u>enumerates</u> a language L if M, when started from a blank tape, runs forever and "emits" all and only the strings in L.

(For example, by writing the string on a special tape and passing through a designated state.)

$\textbf{Recognizable} \equiv \textbf{enumerable}$

Theorem: L is Turing-recognizable iff L is enumerated by some TM.

Proof:

(\Rightarrow) Suppose L(M) = L. We want to construct a TM M' that enumerates L.

M' dovetails all of the computations by M:

- 1. Do 1 step of M's computation on w_0
- 2. Do 2 steps of M on w_0 and w_1
- 3. Do 3 steps on each of w_0, w_1, w_2

where $w_0, w_1, \ldots =$ lexicographic enumeration of Σ^* .

Outputting any strings w_i whose computations have accepted.

$\textbf{Recognizable} \equiv \textbf{enumerable, finis}$

(⇐)

- The Turing-decidable sets are often called *recursive* because they can be computed using certain systems of recursive equations, rather than via TMs.
- The Turing-recognizable sets are usually called *recursively enumerable*, i.e. "computably enumerable," due to the above characterization in terms of enumerators.
- Fact (ps7): *L* is decidable iff it is enumerable in *lexicographic order*.

Three basic facts on the recursive vs. r.e. languages

1. If L is recursive, then L is r.e.

Proof:

2. If *L* is recursive then so is \overline{L} .

Proof:

Proof:

3. L is recursive if and only if both L and \overline{L} are r.e.

Asking questions about arbitrary finite automata

• Proposition: Every regular language is decidable.

Proof: (By "coding" a DFA as a TM.)

What if the DFA *D* is part of the input?

- That is, can we design a single TM that, given two inputs, *D* and *w*, decides whether *D* accepts *w*?
 - The TM needs to use a fixed alphabet & state set for all inputs *D*, *w*.
- **Q:** How to represent $D = (Q, \Sigma_D, \delta, q_0, F)$ and w? List each component of the 5-tuple, separated by |'s.
 - Represent elements of Q as binary strings over $\{0, 1\}$, separated by ,'s.
 - Represent elements of Σ_D as binary strings over {0,1}, separated by ,'s.
 - Represent $\delta: Q \times \Sigma_D \to Q$ as a sequence of triples (q, σ, q') , separated by ,'s, etc.

We denote the encoding of D and w as $\langle D, w \rangle$.

A "Universal" algorithm for deciding regular languages

• **Proposition:** $A_{\text{DFA}} = \{ \langle D, w \rangle : D \text{ a DFA that accepts } w \}$ is decidable.

Proof sketch:

- First check that input is of proper form.
- Then simulate D on w. Implementation on a multitape TM:
 - Tape 2: String w with head at current position (or to be precise, its representation).
 - Tape 3: Current state q of D (i.e., its representation).
- Could work with other encodings, e.g. transition function as a matrix rather than list of triples.

Representation independence

General point: Notions of computability (e.g. decidability and recognizability) are independent of data representations.

- A TM can convert any reasonable encoding to any other reasonable encoding.
- We will use $\langle \cdot \rangle$ to mean "any reasonable encoding".
- We'll need to revisit representation issues again when we discuss computational *speed*.
- For the moment when we are interested only in whether problems are decidable, undecidable, recognizable, etc., so we can be content knowing that there is *some* representation on which an algorithm could work.