Harvard CS 121 and CSCI E-207 Lecture 3: Finite Automata

Salil Vadhan

September 11, 2012

Reading: Sipser, $\S 1.1$ and $\S 1.2$.

(Deterministic) Finite Automata

Example: Home Stereo

- $P=$ power button (ON/OFF)
- S = source button (CD/Radio/TV), only works when stereo is ON, but source remembered when stereo is OFF.
- Starts OFF, in CD mode.
- A computational problem: does a given a sequence of button presses $w \in\{P, S\}^{*}$ leave the system with the radio on?

The Home Stereo DFA

Formal Definition of a DFA

- A DFA M is a 5 -Tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$
Q : Finite set of states
Σ : Alphabet
$\delta:$ "Transition function", $Q \times \Sigma \rightarrow Q$
q_{0} : Start state, $q_{0} \in Q$
$F:$ Accept (or final) states, $F \subseteq Q$
- If $\delta(p, \sigma)=q$,
then if M is in state p and reads symbol $\sigma \in \Sigma$
then M enters state q (while moving to next input symbol)
- Home Stereo example:

Another Visualization

M accepts string x if

- After starting M in the start[initial] state with head on first square,
- when all of x has been read,
- M winds up in a final state.

Examples

- Bounded Counting: A DFA for
$\{x: x$ has an even \# of a 's and an odd \# of b 's $\}$

Transition function δ :

	a	b	
q_{0}	q_{1}	q_{2}	i.e.
q_{1}	q_{0}	q_{3}	$\delta\left(q_{0}, a\right)=$
q_{2}	q_{3}	q_{0}	q_{1}, etc.
q_{3}	q_{2}	q_{1}.	

$>=$ start state
$0=$ final state

$$
Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\} \quad \Sigma=\{a, b\} \quad F=\left\{q_{2}\right\}
$$

Another Example, to work out together

- Pattern Recognition: A DFA that accepts $\{x: x$ has $a a b$ as a substring\}.

Another Example

- Pattern Recognition: A DFA that accepts $\{x: x$ has $a b a b a$ as a substring\}.

Another Example

- A DFA that accepts $\{x: x$ has $a b a b a$ as a substring $\}$.

You are going through a constructive process
string \rightarrow DFA
that is automated in every text editor!
Really a compiler that generates DFA code from an input string pattern

Formal Definition of Computation

$M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ accepts $w=w_{1} w_{2} \cdots w_{n} \in \Sigma^{*}$ (where each $\left.w_{i} \in \Sigma\right)$ if there exist $r_{0}, \ldots, r_{n} \in Q$ such that

1. $r_{0}=q_{0}$,
2. $\delta\left(r_{i}, w_{i+1}\right)=r_{i+1}$ for each $i=0, \ldots, n-1$, and
3. $r_{n} \in F$.

The language recognized (or accepted) by M, denoted $L(M)$, is the set of all strings accepted by M.

Example:

Transition function on an entire string

More formal (not necessary for us, but notation sometimes useful):

- Inductively define $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ by $\delta^{*}(q, \varepsilon)=q$,

$$
\delta^{*}(q, w \sigma)=\delta\left(\delta^{*}(q, w), \sigma\right) .
$$

- Intuitively, $\delta^{*}(q, w)=$ "state reached after starting in q and reading the string w ".
- M accepts w if $\delta^{*}\left(q_{0}, w\right) \in F$.

Determinism: Given M and w, the states r_{0}, \ldots, r_{n} are uniquely determined. Or in other words, $\delta^{*}(q, w)$ is well defined for any q and w : There is precisely one state to which w "drives" M if it is started in a given state.

The impulse for nondeterminism

A language for which it is hard to design a DFA:

$$
\left\{x_{1} x_{2} \cdots x_{k}: k \geq 0 \text { and each } x_{i} \in\{a a b, a a b a, a a a\}\right\} .
$$

But it is easy to imagine a "device" to accept this language if there sometimes can be several possible transitions!

OR

Nondeterministic Finite Automata

An NFA is a 5 -tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

- Q, Σ, q_{0}, F are as for DFAs
- $\delta: Q \times(\Sigma \cup\{\varepsilon\}) \rightarrow P(Q)$.

When in state p reading symbol σ, can go to any state q in the set $\delta(p, \sigma)$.

- there may be more than one such q, or
- there may be none (in case $\delta(p, \sigma)=\emptyset$).

Can "jump" from p to any state in $\delta(p, \varepsilon)$ without moving the input head.

Computations by an NFA

$N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ accepts $w \in \Sigma^{*}$ if we can write $w=y_{1} y_{2} \cdots y_{m}$ where each $y_{i} \in \Sigma \cup\{\varepsilon\}$ and there exist $r_{0}, \ldots, r_{m} \in Q$ such that

1. $r_{0}=q_{0}$,
2. $r_{i+1} \in \delta\left(r_{i}, y_{i+1}\right)$ for each $i=0, \ldots, m-1$, and
3. $r_{m} \in F$.

Nondeterminism: Given N and w, the states r_{0}, \ldots, r_{m} are not necessarily determined.

Example of an NFA

$N=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\{a, b\}, \delta, q_{0},\left\{q_{0}\right\}\right)$, where δ is given by:

	a	b	ε
q_{0}	$\left\{q_{1}\right\}$	\emptyset	\emptyset
q_{1}	$\left\{q_{2}\right\}$	\emptyset	\emptyset
q_{2}	$\left\{q_{0}\right\}$	$\left\{q_{0}, q_{3}\right\}$	\emptyset
q_{3}	$\left\{q_{0}\right\}$	\emptyset	\emptyset

Tree of computations

Tree of computations of NFA N on string aabaab:

How to simulate NFAs?

- NFA accepts w if there is at least one accepting computational path on input w
- But the number of paths may grow exponentially with the length of w !
- Can exponential search be avoided?

NFAs vs. DFAs

NFAs seem more "powerful" than DFAs. Are they?

