Harvard CS 121 and CSCI E-207 Lecture 3: Finite Automata

Salil Vadhan

September 11, 2012

Reading: Sipser, $\S1.1$ and $\S1.2$.

(Deterministic) Finite Automata

Example: Home Stereo

- P = power button (ON/OFF)
- S = source button (CD/Radio/TV), only works when stereo is ON, but source remembered when stereo is OFF.
- Starts OFF, in CD mode.
- A computational problem: does a given a sequence of button presses $w \in \{P, S\}^*$ leave the system with the radio on?

The Home Stereo DFA

Formal Definition of a DFA

- A DFA M is a 5-Tuple $(Q, \Sigma, \delta, q_0, F)$
 - Q : Finite set of states
 - Σ : Alphabet
 - $\delta~$: "Transition function", $Q \ge \Sigma \to Q$
 - q_0 : Start state, $q_0 \in Q$
 - F : Accept (or final) states, $F \subseteq Q$
- If $\delta(p,\sigma) = q$,

then if *M* is in state *p* and reads symbol $\sigma \in \Sigma$

then M enters state q (while moving to next input symbol)

• Home Stereo example:

Another Visualization

next symbol

M accepts string x if

- After starting *M* in the start[initial] state with head on first square,
- when all of x has been read,
- *M* winds up in a final state.

Examples

• Bounded Counting: A DFA for

 $\{x : x \text{ has an even # of } a$'s and an odd # of b's $\}$

Transition function δ :

 $\bigcirc = \text{ start state} \qquad \bigcirc = \text{ final state}$ $Q = \{q_0, q_1, q_2, q_3\} \qquad \Sigma = \{a, b\} \qquad F = \{q_2\}$

Another Example, to work out together

• Pattern Recognition: A DFA that accepts { x : x has aab as a substring}.

Another Example

• Pattern Recognition: A DFA that accepts { x : x has ababa as a substring}.

Another Example

• A DFA that accepts { x : x has ababa as a substring}.

You are going through a constructive process

string \rightarrow DFA

that is automated in every text editor!

Really a compiler that generates DFA code from an input string pattern

Formal Definition of Computation

 $M = (Q, \Sigma, \delta, q_0, F)$ accepts $w = w_1 w_2 \cdots w_n \in \Sigma^*$ (where each $w_i \in \Sigma$) if there exist $r_0, \ldots, r_n \in Q$ such that

1.
$$r_0 = q_0$$
,

2. $\delta(r_i, w_{i+1}) = r_{i+1}$ for each i = 0, ..., n-1, and

3. $r_n \in F$.

The language recognized (or accepted) by M, denoted L(M), is the set of all strings accepted by M.

Example:

Transition function on an entire string

More formal (not necessary for us, but notation sometimes useful):

- Inductively define $\delta^* : Q \times \Sigma^* \to Q$ by $\delta^*(q, \varepsilon) = q$, $\delta^*(q, w\sigma) = \delta(\delta^*(q, w), \sigma)$.
- Intuitively, $\delta^*(q, w) =$ "state reached after starting in q and reading the string w".

•
$$M$$
 accepts w if $\delta^*(q_0, w) \in F$.

Determinism: Given M and w, the states r_0, \ldots, r_n are uniquely determined. Or in other words, $\delta^*(q, w)$ is well defined for any q and w: There is precisely one state to which w "drives" M if it is started in a given state.

The impulse for nondeterminism

A language for which it is hard to design a DFA:

```
\{x_1x_2\cdots x_k: k \ge 0 \text{ and each } x_i \in \{aab, aaba, aaa\}\}.
```

But it is easy to imagine a "device" to accept this language if there sometimes can be several possible transitions!

Nondeterministic Finite Automata

An NFA is a 5-tuple
$$(Q, \Sigma, \delta, q_0, F)$$
, where

- Q, Σ, q_0, F are as for DFAs
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to P(Q).$

When in state p reading symbol σ , can go to <u>any</u> state q in the <u>set</u> $\delta(p, \sigma)$.

- there may be more than one such q, or
- there may be none (in case $\delta(p, \sigma) = \emptyset$).

Can "jump" from p to any state in $\delta(p,\varepsilon)$ without moving the input head.

Computations by an NFA

 $N = (Q, \Sigma, \delta, q_0, F)$ accepts $w \in \Sigma^*$ if we can write $w = y_1 y_2 \cdots y_m$ where each $y_i \in \Sigma \cup \{\varepsilon\}$ and there exist $r_0, \ldots, r_m \in Q$ such that

1. $r_0 = q_0$,

2. $r_{i+1} \in \delta(r_i, y_{i+1})$ for each i = 0, ..., m - 1, and

3. $r_m \in F$.

Nondeterminism: Given N and w, the states r_0, \ldots, r_m are not necessarily determined.

Example of an NFA

 $N = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_0\})$, where δ is given by:

	a	b	${\mathcal E}$
q_0	$\{q_1\}$	Ø	Ø
q_1	$\{q_2\}$	Ø	Ø
q_2	$\{q_0\}$	$\{q_0, q_3\}$	Ø
q_3	$\{q_0\}$	Ø	Ø

Tree of computations

Tree of computations of NFA N on string *aabaab*:

How to simulate NFAs?

- NFA accepts w if there is at least one accepting computational path on input w
- But the number of paths may grow exponentially with the length of *w*!
- Can exponential search be avoided?

NFAs vs. DFAs

NFAs seem more "powerful" than DFAs. Are they?