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(Deterministic) Finite Automata

Example: Home Stereo

• P = power button (ON/OFF)

• S = source button (CD/Radio/TV), only works when stereo is
ON, but source remembered when stereo is OFF.

• Starts OFF, in CD mode.

• A computational problem: does a given a sequence of button
presses w ∈ {P, S}∗ leave the system with the radio on?
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The Home Stereo DFA
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Formal Definition of a DFA

• A DFA M is a 5-Tuple (Q,Σ, δ, q0, F )

Q : Finite set of states
Σ : Alphabet
δ : “Transition function”, Q x Σ→ Q

q0 : Start state, q0 ∈ Q
F : Accept (or final) states, F ⊆ Q

• If δ(p, σ) = q,

then if M is in state p and reads symbol σ ∈ Σ

then M enters state q (while moving to next input symbol)

• Home Stereo example:
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Another Visualization

a b b a b a

1

2

3

4

Input tape

Start state marked with <

Double-circled states
are accepting or final

Reading head
moves left to
right, one square
at a time

Finite-state control changes
state depending on:
• current state
• next symbol

M accepts string x if

• After starting M in the start[initial] state with head on first
square,

• when all of x has been read,

• M winds up in a final state.
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Examples

• Bounded Counting: A DFA for

{x : x has an even # of a’s and an odd # of b’s}

q0 q1

q2 q3

a

a

a

a

b b b b

Transition
function δ:

a b

q0 q1 q2
q1 q0 q3
q2 q3 q0
q3 q2 q1.

i.e.
δ(q0, a) =

q1, etc.

= start state = final state

Q = {q0, q1, q2, q3} Σ = {a, b} F = {q2}
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Another Example, to work out together

• Pattern Recognition: A DFA that accepts { x : x has aab as a
substring}.
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Another Example

• Pattern Recognition: A DFA that accepts { x : x has ababa as a
substring}.
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Another Example

• A DFA that accepts { x : x has ababa as a substring}.

You are going through a constructive process

string→ DFA

that is automated in every text editor!

Really a compiler that generates DFA code from an input string
pattern
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Formal Definition of Computation

M = (Q,Σ, δ, q0, F ) accepts w = w1w2 · · ·wn ∈ Σ∗ (where each
wi ∈ Σ) if there exist r0, . . . , rn ∈ Q such that

1. r0 = q0,

2. δ(ri, wi+1) = ri+1 for each i = 0, . . . , n− 1, and

3. rn ∈ F .

The language recognized (or accepted) by M , denoted L(M),
is the set of all strings accepted by M .

Example:
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Transition function on an entire string

More formal (not necessary for us, but notation sometimes
useful):

• Inductively define δ∗ : Q× Σ∗→ Q by δ∗(q, ε) = q,
δ∗(q, wσ) = δ(δ∗(q, w), σ).

• Intuitively, δ∗(q, w) =

“state reached after starting in q and reading the string w”.

• M accepts w if δ∗(q0, w) ∈ F .

Determinism: Given M and w, the states r0, . . . , rn are
uniquely determined. Or in other words, δ∗(q, w) is well defined
for any q and w: There is precisely one state to which w
“drives” M if it is started in a given state.
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The impulse for nondeterminism

A language for which it is hard to design a DFA:

{x1x2 · · ·xk : k ≥ 0 and each xi ∈ {aab, aaba, aaa}}.

But it is easy to imagine a “device” to accept this language if
there sometimes can be several possible transitions!

a
b

a
a

a

a

b
a

a

a OR
b

a

a

a a b

OR
a

ε

a

a a b
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Nondeterministic Finite Automata

An NFA is a 5-tuple (Q,Σ, δ, q0, F ), where

• Q,Σ, q0, F are as for DFAs

• δ : Q× (Σ ∪ {ε})→ P (Q).

When in state p reading symbol σ, can go to any state q in the
set δ(p, σ).

• there may be more than one such q, or

• there may be none (in case δ(p, σ) = ∅).

Can “jump” from p to any state in δ(p, ε) without moving the
input head.
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Computations by an NFA

N = (Q,Σ, δ, q0, F ) accepts w ∈ Σ∗ if we can write
w = y1y2 · · · ym where each yi ∈ Σ ∪ {ε} and there exist
r0, . . . , rm ∈ Q such that

1. r0 = q0,

2. ri+1 ∈ δ(ri, yi+1) for each i = 0, . . . ,m− 1, and

3. rm ∈ F .

Nondeterminism: Given N and w, the states r0, . . . , rm are
not necessarily determined.
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Example of an NFA

q0 q1 q2 q3

b

a

a

a a bN :

N = ({q0, q1, q2, q3}, {a, b}, δ, q0, {q0}), where δ is given by:

a b ε

q0 {q1} ∅ ∅
q1 {q2} ∅ ∅
q2 {q0} {q0, q3} ∅
q3 {q0} ∅ ∅

14



Harvard CS 121 & CSCI E-207 September 11, 2011

Tree of computations

Tree of computations of NFA N on string aabaab:
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How to simulate NFAs?

• NFA accepts w if there is at least one accepting computational
path on input w

• But the number of paths may grow exponentially with the
length of w!

• Can exponential search be avoided?
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NFAs vs. DFAs

NFAs seem more “powerful” than DFAs. Are they?
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