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Proofs & Complexity Theory

• NP = “languages L s.t. members of L have efficiently 
verifiable proofs”

• Def: A proof system for a language L is an 
algorithm V (“verifier”) s.t.
– Completeness (“true assertions have proofs”):

xL   proof s.t. V (x, proof )=accept
– Soundness (“false assertions have no proofs”):

xL  proof * V (x, proof *)=reject
– Efficiency

V runs in time poly(|x|)

• NP = class of languages w/ proof systems.
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Today: Two New Ingredients

• Randomization: verifier can “toss coins”
– Augment TM with extra tape of random bits
– Allow verifier to err with small probability

• Interaction: replace static proof with dynamic, all-
powerful prover
– Will “interact” with verifier and try to “convince” it that 

assertion is true.
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What can we gain?

• More general notion of “efficiently verifiable proofs”

• Greater efficiency in verification 
– verifier may not have to “read” entire proof

• Properties impossible in NP pfs (“zero knowledge”)

• Cryptographic protocols.

• Connection to approximability of NP-complete problems.
– E.g. Approximate size of largest clique in a graph within 1%.
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Interactive Proofs

• Parties are functions (x, coins, m1,…,mi-1)mi

• mi * {accept, reject, halt}

m1

m2

m3

mk

Prover
computationally

unbounded 

Verifier
polynomial

time

accept

Common Input x
Random coinsP

Random coinsV
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Interactive Proofs

Def: An interactive proof system for a language L is an 
interactive protocol (P,V) where

• Completeness: If xL, then
V accepts in (P,V)(x) with probability 1

• Soundness: If xL, then for every P*,
V accepts in (P*,V)(x) with probability  ½

• Efficiency: V runs in time poly(|x|).

Def: IP = { L : L has an interactive proof }
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Comments on Definition

• Probabilities taken only over coin tosses, not over 
input.

• Can reduce error probability (in soundness) to 2-1000

with 1000 repetitions.

• Interactive proofs generalize classical proofs: NPIP.
– Is IP bigger?
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GRAPH ISOMORPHISM

• When are two graphs the “same” upto relabelling?  

• Graph G with vertices {1,...,n} can be specified by 
(sorted) list of edges E={(i1, j1), (i2, j2),...,(im, jm)}

• Def: For  : {1,...,n} {1,...,n} permutation (bijection), 
(G) = graph on {1,...,n} w/ edge set 

E={(i, (j)) : (i, j)E}

• Def: G is isomorphic to H (written GH) if   s.t.  
(G)= H 
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GRAPH ISOMORPHISM
Example 1
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Are these graphs isomorphic?
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GRAPH ISOMORPHISM
Example 2
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What about these graphs?
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GRAPH ISOMORPHISM
Example 3
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And these?
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GRAPH NONISOMORPHISM

• Def: GRAPHISO = {(G0, G1) : G0G1}
GRAPHNONISO = GRAPHISO.

• GRAPHISONP (relabelling is a proof), but not known 
to be in P or to be NP-complete. 

• GRAPHNONISO not known to be in NP.

• Thm: GRAPHNONISO IP 
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Proof System for GRAPHNONISO
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Completeness: If G0G1, then
• H is isomorphic to exactly one of G0,G1 (namely Gcoin).
 Prover always guesses correctly
 Verifier accepts w.p.1

Soundness: If G0G1, then
• Every graph H isomorphic to G0 is also isomorphic to G1 

& vice-versa. (+ distributions under random  are same)
 H gives prover no information about coin.
 Prover guesses correctly w.p.  1/2 no matter what 

strategy it follows.

Analysis of GRAPHNONISO Pf Sys.
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The Power of Interaction

• Have seen: an interactive proof for a language not 
known to have a classical proof system.

• Q: How much more powerful are interactive proofs?

• Thm: IP=PSPACE
– Believed to be much larger than NP.
– Contains all of co-NP.
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What does one learn from a proof?

• The validity of the assertion being proven (by defn).
Anything else?

• Classical (NP) proofs: Upon receiving a proof of 
statement x, one gains the ability to prove x to others.

• Interactive proofs: Can be “zero knowledge”, i.e. 
reveal nothing other than the validity of the assertion 
being proven.  
 verifier does not gain ability to prove same 
assertion to others!
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Zero-Knowledge Proofs
GRAPHNONISO

• In GRAPHNONISO proof system:
– Only thing prover sends verifier is guess.
– When G0G1, guess always equals verifier’s coin.
– Verifier “already knew” this value.
 zero knowledge!

Comments:
• Only require zero-knowledge condition for inputs xL.

• Reasoning above relies on verifier following protocol.
– Bad for cryptographic applications.
– Can fix this by more complicated protocol. 
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MAP 3-COLORING

• Given: a map M
Decide: can it be colored 
w/3 colors s.t. no two 
adjacent countries have 
the same color?

• Formally: 3-COL = { maps M : M is 3-colorable}

• Fact: 3-COL is NP-complete.

http://www.ctl.ua.edu/math103/
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GRAPH 3-COLORING

• Given: a graph G
Decide: can it be colored 
w/3 colors s.t. no two 
adjacent vertices have 
the same color?

• Formally: 3-COL = { graphs G : G is 3-colorable}

• Fact: 3-COL is NP-complete.
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GRAPH 3-COLORING
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Claim: the following graph is 3-colorable
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3-COL Proof System
Prover

Verifiergraph G

3-coloring
C of V

1. Choose random
permutation  of 
{R,G,B}.  Let C= (C). “commit” to coloring C

2. Choose random
edge (x,y).

3. Accept if 
C(x)C(y)

(x,y)

“reveal” C(x), C(y)
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Analysis of “Physical” 3-COL Proof Sys. 

Completeness:
• If C is a proper 3-coloring, so is C .
 For every edge (x,y), C(x)C(y)
 Verifier accepts w.p. 1.

Soundness:
• Prover committed to some C after step 1.
 Since G is not 3-colorable, then for some edge (x,y), 

C(x)=C(y)
 Verifier accepts w.p.  1-m, where m = # edges
(repeat m times to get error prob. to  (1-mm < 1/2.)
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Analysis of “Physical” 3-COL Proof Sys. 
(cont.)

Zero Knowledge:
• All verifier sees are commitments & colors on one 

edge.

• Commitments reveal nothing (in physical 
implementation).

• Colors on one edge = random pair of distinct colors.

• Verifier can generate random pair of distinct colors on 
its own, without prover.

 zero knowledge!
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“Digital” Implementation?

• Need way to “commit” to coloring C s.t.
– Binds prover to C, i.e. cannot later change its mind about 

colors of any vertices.
– Yet reveals nothing to verifier.

• Impossible?  NO
– Key observation: only need it to “reveal nothing” to a 

polynomial-time algorithm.
– Cryptography provides such commitments.

• Thm: Every language in NP has a zero-knowledge pf 
(assuming  commitments).

– Pf: 3-COL is NP-complete  can reduce any NP problem to it.
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Defining Zero Knowledge

• How to formalize “Verifier learns nothing”?

Simulation Paradigm (informally):

• Require: anything that can computed in poly-time by 
interacting with prover can also be computed in poly-
time without interacting with prover.

• That is, for every poly-time verifier V*, there exists a 
poly-time simulator S  s.t. 

[output of S(x)]  [output of V* after interacting w/ P on x].
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An Application: Identification

• Alice wants to securely identity herself to Bob.

• Traditional “password” solutions: Bob learns Alice’s 
password & can later impersonate her.

Alice
• Alice publishes a graph G s.t. 
only she knows a 3-coloring.

• ZK property  Bob (or an 
eavesdropper) cannot later 
impersonate Alice. 

Using zero-knowledge (ZK) proofs:

ZK proof that
G is 3-colorable.

Bob

public directory

G
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For more on these topics
• Sipser Sec. 10.4

• “Interactive and Zero-Knowledge Proofs.”  Lecture Notes from 
Park City Math Institute Graduate Summer School 2000. 
http://www.eecs.harvard.edu/~salil/research.html

• Oded Goldreich. Modern Cryptography, Probabilistic Proofs, and 
Pseudorandomness.  Springer-Verlag, 1998.

• Oded Goldreich. Foundations of Cryptography — Volume I (Basic 
Tools).  Cambridge University Press, 2001.
See http://www.wisdom.weizmann.ac.il/~oded/.

• Courses: CS 220r, 221, MIT 18.405J, 18.425J


