Harvard CS 121 and CSCI E-207 Lecture 23: More NP-completeness

Salil Vadhan

November 27, 2012

Vertex Cover (VC)

- Instance:
- a graph, e.g.

- a number k (e.g. 4)
- Question: Is there a set of k vertices that "cover" the graph, i.e., include at least one endpoint of every edge?

VC is NP-complete

- VC is in NP:
- $3-\mathrm{SAT} \leq_{\mathrm{P}} \mathrm{VC}$:
- Let F be a 3-CNF formula with clauses $C_{1} \ldots, C_{m}$, variables x_{1}, \ldots, x_{n}.
- We construct a graph G_{F} and a number N_{F} such that:
G_{F} has a size N_{F} vertex cover iff F is satisfiable

Construction of G_{F} and N_{F} from F

- $G_{F}=$ one dumbbell for each variable, one triangle for each clause, and corner j of triangle i is connected to the vertex representing the j th literal in C_{i}.
- $N_{F}=2 m+n=2$ (\# clauses) + (\# variables).
$\Rightarrow 1$ vertex from each dumbbell and 2 from each triangle.

Correctness of the Reduction

- If F is satisfiable, then there is an N_{F} cover:
- If there is an N_{F} cover, then F is satisfiable:

CLIQUE

- Instance:
- a graph, e.g.

- a number k (e.g. 4)
- Question: Is there a clique of size k, i.e., a set of k vertices such that there is an edge between each pair?

- Easy to see that CLIQUE \in NP.

$\mathrm{VC} \leq_{\mathbf{P}}$ CLIQUE

If G is any graph, let G^{c} be the graph with the same vertices such that:
there is an edge between x and y in G^{c}
iff
there is no edge between x and y in G
e.g.

$\mathrm{VC} \leq_{\mathrm{P}}$ CLIQUE, continued

Let (G, k) be an instance of VC .
Claim: G has a k-cover iff G^{c} has a $|G|-k$ clique, where $|G|$ is the number of vertices in G.
(So the mapping $(G, k) \mapsto\left(G^{c},|G|-k\right)$ is a reduction of VC to CLIQUE.)

Proof:

Integer Linear Programming

An integer linear program is

- A set of variables x_{1}, \ldots, x_{n} which must take integer values.
- A set of linear inequalities:

$$
a_{i 1} x_{1}+a_{i 2} x_{2}+\ldots+a_{i n} x_{n} \leq c_{i} \quad[i=1, \ldots, m]
$$

e.g. $x_{1}-2 x_{2}+x_{4} \leq 7$
$x_{1} \geq 0 \quad\left[-x_{1} \leq 0\right]$
$x_{4}+x_{1} \leq 3$

ILP $=$ the set of integer linear programs for which there are values for the variables that simultaneously satisfy all the inequalities.

ILP is NP-complete

Integer Linear Programming \in NP. (Not obvious! Need a little math to prove it. Proof omitted.)

Integer Linear Programming is NP-hard: by reduction from 3-SAT (3-SAT \leq_{p} ILP). Given 3-CNF Formula F, construct following ILP P as follows:

Note: Linear Programming where the variables can take real values is known to be in P.

More NP-complete/NP-hard Problems

- Hamiltonian Circuit (and hence TSP) (see Sipser for related problems)
- Scheduling
- Circuit Minimization
- Short Proof
- Nash Equilibrium with Maximum Payoff
- Protein Folding
$\bullet:$
- See Garey \& Johnson for hundreds more.

