Harvard CS 121 and CSCI E-207 Lecture 23: More NP-completeness

Salil Vadhan

November 27, 2012

VERTEX COVER (VC)

- Instance:
 - a graph, e.g.

- a number k (e.g. 4)
- <u>Question</u>: Is there a set of k vertices that "cover" the graph, i.e., include at least one endpoint of every edge?

VC is NP-complete

- VC is in NP:
- 3-SAT ≤_P VC:
 - Let F be a 3-CNF formula with clauses $C_1 \dots, C_m$, variables x_1, \dots, x_n .
 - We construct a graph G_F and a number N_F such that: G_F has a size N_F vertex cover iff F is satisfiable

Construction of G_F and N_F from F

- G_F = one dumbbell for each variable, one triangle for each clause, and corner j of triangle i is connected to the vertex representing the jth literal in C_i .
- $N_F = 2m + n = 2$ (# clauses) + (# variables). \Rightarrow 1 vertex from each dumbbell and 2 from each triangle.

Correctness of the Reduction

• If F is satisfiable, then there is an N_F cover:

• If there is an N_F cover, then F is satisfiable:

CLIQUE

• Instance:

- a number k (e.g. 4)
- <u>Question</u>: Is there a clique of size k, i.e., a set of k vertices such that there is an edge between each pair?

• Easy to see that $CLIQUE \in NP$.

$VC \leq_P CLIQUE$

If G is any graph, let G^c be the graph with the same vertices such that:

there is an edge between x and y in G^c iff there is <u>no</u> edge between x and y in G

Harvard CS 121 & CSCI E-207

$VC \leq_{P} CLIQUE$, continued

Let (G, k) be an instance of VC.

Claim: *G* has a *k*-cover iff G^c has a |G| - k clique, where |G| is the number of vertices in *G*.

(So the mapping $(G, k) \mapsto (G^c, |G| - k)$ is a reduction of VC to CLIQUE.)

Proof:

INTEGER LINEAR PROGRAMMING

An integer linear program is

- A set of variables x_1, \ldots, x_n which must take integer values.
- A set of linear inequalities: $a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n \le c_i$ $[i = 1, \ldots, m]$

e.g.
$$x_1 - 2x_2 + x_4 \le 7$$

 $x_1 \ge 0$ $[-x_1 \le 0]$
 $x_4 + x_1 \le 3$

ILP = the set of integer linear programs for which there are values for the variables that simultaneously satisfy all the inequalities.

ILP is NP-complete

INTEGER LINEAR PROGRAMMING \in NP. (Not obvious! Need a little math to prove it. Proof omitted.)

INTEGER LINEAR PROGRAMMING is NP-hard: by reduction from 3-SAT (3-SAT \leq_P ILP). Given 3-CNF Formula *F*, construct following ILP *P* as follows:

Note: LINEAR PROGRAMMING where the variables can take *real* values is known to be in P.

More NP-complete/NP-hard Problems

- HAMILTONIAN CIRCUIT (and hence TSP) (see Sipser for related problems)
- SCHEDULING
- CIRCUIT MINIMIZATION
- SHORT PROOF
- NASH EQUILIBRIUM WITH MAXIMUM PAYOFF
- PROTEIN FOLDING
- :
- See Garey & Johnson for hundreds more.