Harvard CS 121 and CSCI E-207 Lecture 21: Nondeterministic Polynomial Time

Salil Vadhan
(lecture given by Colin Jia Zheng)

November 15, 2012

- Reading: Sipser §7.3.
"Nondeterministic Time"
We say that a nondeterministic TM M decides a language L iff for every $w \in \Sigma^{*}$,

1. Every computation by M on input w halts (in state $q_{\text {accept }}$ or state $q_{\text {reject }}$);
2. $w \in L$ iff there exists at least one accepting computation by M on w.
3. $w \notin L$ iff every computation by M on w rejects (or dies, with no applicable transitions).
M decides L in nondeterministic time $t(\cdot)$ iff for every w, every computation by M on w takes at most $t(|w|)$ steps.

More on Nondeterministic Time

1. Linear speedup holds.
2. "Polynomial equivalence" holds among nondeterministic models
e.g. L decided in time T by a nondeterministic multitape TM
$\Rightarrow L$ decided in time $O\left(T^{2}\right)$ by a nondeterministic 1-tape TM

Definition:

$\operatorname{NTIME}(t(n))=$
$\{L: L$ is decided in time $t(n)$ by some nondet. multitape TM $\}$
$\mathrm{NP}=\underset{\text { polynomial } p}{\bigcup} \operatorname{NTIME}(p)=\bigcup_{k \geq 0} \operatorname{NTIME}\left(n^{k}\right)$.

P vs. NP

- Clearly $\mathrm{P} \subseteq \mathrm{NP}$. But there are problems in NP that are not obviously in $\mathrm{P}(\neq$ "obviously not" $)$
- TSP = Travelling Salesman Problem.
- Let $m>0$ be the number of cities,
- $D:\{1, \ldots, m\}^{2} \rightarrow \mathcal{N}$ give the distance $D(i, j)$ between city i and city j, and
- B be a distance bound

Then TSP $=$

$$
\{\langle m, D, B\rangle: \exists \text { tour of all cities of length } \leq B\}
$$

Traveling Salesman Problem: Example

"tour" = visits every city and returns to starting point
There are many variants of TSP, eg require visiting every city exactly once, triangle inequality on distances...

$\mathbf{T S P} \in \mathbf{N P}$

- Why is TSP \in NP?

Because if $\langle m, D, B\rangle \in \mathrm{TSP}$, the following nondeterministic strategy will accept in time $O\left(n^{3}\right)$, where $n=$ length of representation of $\langle m, D, B\rangle$.

- nondeterministically write down a sequence of cities c_{1}, \ldots, c_{t}, for $t \leq m^{2}$. ("guess")
- trace through that tour and verify that all cities are visited and the length is $\leq B$. If so, halt in $q_{\text {accept }}$. If not, halt in $q_{\text {reject }}$ (and "check")

If $\langle m, D, B\rangle \notin \mathrm{TSP}$, above has no accepting computations.

But any obvious deterministic version of this algorithm takes exponential time.

A useful characterization of NP

- A verifier for a language L is an algorithm V such that

$$
L=\{x: V \text { accepts }\langle x, y\rangle \text { for some string } y\} .
$$

- A polynomial-time verifier is one that runs in time polynomial in $|x|$ on input $\langle x, y\rangle$.
- A string y that makes $V(\langle x, y\rangle)$ accept is a "proof" or "certificate" that $x \in L$.
- Example: TSP
certificate $y=$?

$$
V(\langle x, y\rangle)=?
$$

- Without loss of generality, $|y|$ is at most polynomial in $|x|$.

NP is the class of easily verified languages

- Theorem: NP equals the class of languages with polynomial-time verifiers.

Proof:

\Rightarrow
\Leftarrow

- " L is in NP iff members of L have short, efficiently verifiable certificates"

More problems in NP

- Hamiltonian Circuit

$$
\begin{aligned}
& \mathrm{HC}=\{G: G \text { is an undirected graph with a circuit } \\
&\text { that touches each node exactly once }\} .
\end{aligned}
$$

Really just a special case of TSP. (why?)

- We are not fussy about the precise method of representing a graph as a string, because all reasonable methods are within a polynomial of each other in length.

A "similar" problem that is in P

- Eulerian Circuit

$$
\begin{aligned}
\mathrm{EC}=\{G: G & \text { is an undirected graph with a circuit } \\
& \text { that passes through each edge exactly once }\} .
\end{aligned}
$$

It is easy to check if G is Eulerian. . .
So $E C \in P$.

Composite Numbers

- Composites $=\{w: w$ a composite number in binary $\}$.

Composites $\in N P$

Not obviously in P, since an exhaustive search for factors can take time proportional to the value of w, which grows as $2^{n}=$ exponential in the size of w.

Only recently (2002), it was shown that COMPOSITES $\in P$ (equivalently, PRIMES $\in \mathrm{P}$).

Boolean logic

Boolean formulas
Def: A Boolean formula (B.F.) is either:

- a "Boolean variable" x, y, z, \ldots
- $(\alpha \vee \beta)$ where α, β are B.F.s.
- $(\alpha \wedge \beta)$ where α, β are B.F.s.
- $\neg \alpha$ where α is a B.F.
e.g. $(x \vee y \vee z) \wedge(\neg x \vee \neg y \vee \neg z)$
[Omitting redundant parentheses]

Boolean satisfiability

Def: A truth assignment is a mapping
a : Boolean variables $\rightarrow\{0,1\}$. [0 false, $1=$ true $]$
The $\{0,1\}$ value of a B.F. γ on a truth assignment a is given by the usual rules of logic:

- If γ is a variable x, then $\gamma(a)=a(x)$.
- If $\gamma=(\alpha \vee \beta)$, then $\gamma(a)=1$ iff $\alpha(a)=1$ or $\beta(a)=1$.
- If $\gamma=(\alpha \wedge \beta)$, then $\gamma(a)=1$ iff $\alpha(a)=1$ and $\beta(a)=1$.
- If $\gamma=\neg \alpha$, then $\gamma(a)=1$ iff $\alpha(a)=0$.
a satisfies γ (sometimes written $a \models \gamma$) iff $\gamma(a)=1$.
In this case, γ is satisfiable. If no a satisfies γ, then γ is unsatisfiable.

Boolean Satisfiability

SAT $=\{\alpha: \alpha$ is a satisfiable Boolean formula $\}$.

Prop: $S A T \in N P$

A "similar" problem in P: 2-SAT

A 2-CNF formula is one that looks like

$$
(x \vee y) \wedge(\neg y \vee z) \wedge(\neg y \vee \neg x)
$$

i.e., a conjunction of clauses, each of which is the disjunction of $\underline{2}$ literals (or 1 literal, since $(x) \equiv(x \vee x)$)
$2-$ SAT $=$ the set of satisfiable $2-\mathrm{CNF}$ formulas.

$$
\text { e.g. }(x \vee y) \wedge(\neg x \vee \neg y) \wedge(\neg x \vee y) \wedge(x \vee \neg y) \notin \text { SAT }
$$

2-SAT $\in \mathbf{P}$

Method (resolution):

1. If x and $\neg x$ are both clauses, then not satisfiable

$$
\text { e.g. }(x) \wedge(z \vee y) \wedge(\neg x)
$$

2. If $(x \vee y) \wedge(\neg y \vee z)$ are both clauses, add clause $(x \vee z)$ (which is implied).
3. Repeat. If no contradiction emerges \Rightarrow satisfiable.
$O\left(n^{2}\right)$ repetitions of step 2 since only 2 literals/clause.

Proof of correctness: omitted

