
Harvard CS 121 and CSCI E-207
Lecture 21: Nondeterministic

Polynomial Time

Salil Vadhan
(lecture given by Colin Jia Zheng)

November 15, 2012

• Reading: Sipser §7.3.

Harvard CS 121 & CSCI E-207 November 15, 2012

“Nondeterministic Time”

We say that a nondeterministic TM M decides a language L iff
for every w ∈ Σ∗,

1. Every computation by M on input w halts (in state qaccept or
state qreject);

2. w ∈ L iff there exists at least one accepting computation by
M on w.

3. w /∈ L iff every computation by M on w rejects (or dies, with
no applicable transitions).

M decides L in nondeterministic time t(·) iff for every w, every
computation by M on w takes at most t(|w|) steps.

1

Harvard CS 121 & CSCI E-207 November 15, 2012

More on Nondeterministic Time

1. Linear speedup holds.

2. “Polynomial equivalence” holds among nondeterministic
models

e.g. L decided in time T by a nondeterministic multitape TM

⇒ L decided in time O(T 2) by a nondeterministic 1-tape TM

Definition:

NTIME(t(n)) =

{L : L is decided in time t(n) by some nondet. multitape TM}

NP =
⋃

polynomial p
NTIME(p) =

⋃
k≥0

NTIME(nk).

2

Harvard CS 121 & CSCI E-207 November 15, 2012

P vs. NP

• Clearly P ⊆ NP. But there are problems in NP that are
not obviously in P (6= “obviously not”)

• TSP = TRAVELLING SALESMAN PROBLEM.

• Let m > 0 be the number of cities,

• D : {1, . . . ,m}2→ N give the distance D(i, j) between city i
and city j, and

• B be a distance bound

Then TSP =

{〈m,D,B〉 : ∃ tour of all cities of length ≤ B}.
3

Harvard CS 121 & CSCI E-207 November 15, 2012

Traveling Salesman Problem: Example

NP 2

P vs. NP

• Clearly P ⊆ NP. But there are problems in NP that are not obviously in P ("= “obviously not”)

• TSP = Travelling Salesman Problem.

• Let m > 0 be the number of cities,

• D : {1, . . . ,m}2 → N give the distance D(i, j) between city i and city j, and

• B be a distance bound

Then TSP = {〈m,D,B〉 : ∃ tour of all cities of length ≤ B}.

1 2

3 4

3

7

5

2
3 4

n = 4

B ≥ 15 ⇒ 〈m, D, B〉 ∈ TSP

B ≤ 14 ⇒ 〈m, D, B〉 /∈ TSP

“tour” = visits every city exactly once and returns to starting point

• Why is TSP ∈ NP?

Because if 〈m,D,B〉 ∈ TSP, the following nondeterministic strategy will accept in time
O(n3), where n = length of representation of 〈m,D,B〉.

− nondeterministically write down a sequence of cities c1, . . . , cm. (“guess”)

− trace through that circuit and verify that the length is ≤ B. If so, halt in qaccept. If not,
halt in qreject. (and “check”)

But any obvious deterministic version of this algorithm takes exponential time.

“tour” = visits every city and returns to starting point

There are many variants of TSP, eg require visiting every city
exactly once, triangle inequality on distances...

4

Harvard CS 121 & CSCI E-207 November 15, 2012

TSP∈ NP

• Why is TSP ∈ NP?

Because if 〈m,D,B〉 ∈ TSP, the following nondeterministic
strategy will accept in time O(n3), where n = length of
representation of 〈m,D,B〉.

− nondeterministically write down a sequence of cities
c1, . . . , ct, for t ≤ m2. (“guess”)

− trace through that tour and verify that all cities are visited
and the length is ≤ B. If so, halt in qaccept. If not, halt in
qreject. (and “check”)

If 〈m,D,B〉 /∈ TSP, above has no accepting computations.

But any obvious deterministic version of this algorithm takes
exponential time.

5

Harvard CS 121 & CSCI E-207 November 15, 2012

A useful characterization of NP

• A verifier for a language L is an algorithm V such that

L = {x : V accepts 〈x, y〉 for some string y}.

• A polynomial-time verifier is one that runs in time polynomial in
|x| on input 〈x, y〉.

• A string y that makes V (〈x, y〉) accept is a “proof” or
“certificate” that x ∈ L.

• Example: TSP

certificate y = ?

V (〈x, y〉) = ?

• Without loss of generality, |y| is at most polynomial in |x|.
6

Harvard CS 121 & CSCI E-207 November 15, 2012

NP is the class of easily verified languages

• Theorem: NP equals the class of languages with
polynomial-time verifiers.

Proof:

⇒

⇐

• “L is in NP iff members of L have short, efficiently verifiable
certificates”

7

Harvard CS 121 & CSCI E-207 November 15, 2012

More problems in NP

• HAMILTONIAN CIRCUIT

HC = {G : G is an undirected graph with a circuit
that touches each node exactly once}.

NP 3

A useful characterization of NP

• A verifier for a language L is an algorithm V such that

L = {x : V accepts 〈x, y〉 for some string y}.

• A polynomial-time verifier is one that runs in time polynomial in |x| on input 〈x, y〉.

• A string y that makes V (〈x, y〉) accept is a “proof” or “certificate” that x ∈ L.

• Example: TSP

certificate y = ?

V (〈x, y〉) = ?

• Without loss of generality, |y| is at most polynomial in |x|.

• Theorem: NP equals the class of languages with polynomial-time verifiers.

Proof:

• “L is in NP iff members of L have short, efficiently verifiable certificates”

More problems in NP

• Hamiltonian Circuit

HC = {G : G an undirected graph with a circuit that touches each node exactly once}.

HC No HC

Really just a special case of TSP.

• We are not fussy about the precise method of representing a graph as a string, because all
reasonable methods are within a polynomial of each other in length.

Really just a special case of TSP. (why?)

• We are not fussy about the precise method of representing a
graph as a string, because all reasonable methods are within a
polynomial of each other in length.

8

Harvard CS 121 & CSCI E-207 November 15, 2012

A “similar” problem that is in P

• EULERIAN CIRCUIT

EC = {G : G is an undirected graph with a circuit
that passes through each edge exactly once}.

NP 4

A “similar” problem that is in P

• Eulerian Circuit

EC = {G : G is an undirected graph with a circuit
that passes through each edge exactly once}.

It is easy to check if G is Eulerian. . .

So EC ∈ P.

NP problems, continued

• Composites = {w : w is the binary notation for a composite number }.

Composites ∈ NP

Trial division take time exponential in the length of the binary representation.

Only recently, it was shown that Composites ∈ P (equivalently, Primes ∈ P).

• Boolean Satisfiability

Def: A Boolean formula (B.F.) is either:

· a “Boolean variable” x, y, z, . . .

· (α ∨ β) where α,β are B.F.’s.

· (α ∧ β) where α,β are B.F.’s.

· ¬α where α is a B.F.

e.g. (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z)

[Omitting redundant parentheses]

It is easy to check if G is Eulerian. . .

So EC ∈ P.

9

Harvard CS 121 & CSCI E-207 November 15, 2012

Composite Numbers

• COMPOSITES = {w : w a composite number in binary }.

COMPOSITES ∈ NP

Not obviously in P, since an exhaustive search for factors
can take time proportional to the value of w, which grows as
2n = exponential in the size of w.

Only recently (2002), it was shown that COMPOSITES ∈ P
(equivalently, PRIMES ∈ P).

10

Harvard CS 121 & CSCI E-207 November 15, 2012

Boolean logic

Boolean formulas

Def: A Boolean formula (B.F.) is either:

· a “Boolean variable” x, y, z, . . .

· (α ∨ β) where α, β are B.F.’s.

· (α ∧ β) where α, β are B.F.’s.

· ¬α where α is a B.F.

e.g. (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z)

[Omitting redundant parentheses]

11

Harvard CS 121 & CSCI E-207 November 15, 2012

Boolean satisfiability

Def: A truth assignment is a mapping
a : Boolean variables→ {0, 1}. [0 = false, 1 = true]

The {0, 1} value of a B.F. γ on a truth assignment a is given by
the usual rules of logic:

· If γ is a variable x, then γ(a) = a(x).

· If γ = (α ∨ β), then γ(a) = 1 iff α(a) = 1 or β(a) = 1.

· If γ = (α ∧ β), then γ(a) = 1 iff α(a) = 1 and β(a) = 1.

· If γ = ¬α, then γ(a) = 1 iff α(a) = 0.

a satisfies γ (sometimes written a |= γ) iff γ(a) = 1.

In this case, γ is satisfiable. If no a satisfies γ, then γ is
unsatisfiable.

12

Harvard CS 121 & CSCI E-207 November 15, 2012

Boolean Satisfiability

SAT = {α : α is a satisfiable Boolean formula}.

Prop: SAT ∈ NP

13

Harvard CS 121 & CSCI E-207 November 15, 2012

A “similar” problem in P: 2-SAT

A 2-CNF formula is one that looks like

(x ∨ y) ∧ (¬y ∨ z) ∧ (¬y ∨ ¬x)

i.e., a conjunction of clauses, each of which is the disjunction
of 2 literals (or 1 literal, since (x) ≡ (x ∨ x))

2-SAT = the set of satisfiable 2-CNF formulas.

e.g. (x ∨ y) ∧ (¬x ∨ ¬y) ∧ (¬x ∨ y) ∧ (x ∨ ¬y) /∈ SAT

14

Harvard CS 121 & CSCI E-207 November 15, 2012

2-SAT ∈ P

Method (resolution):

1. If x and ¬x are both clauses, then not satisfiable

e.g. (x) ∧ (z ∨ y) ∧ (¬x)

2. If (x ∨ y) ∧ (¬y ∨ z) are both clauses, add clause (x ∨ z)
(which is implied).

3. Repeat. If no contradiction emerges⇒ satisfiable.

O(n2) repetitions of step 2 since only 2 literals/clause.

Proof of correctness: omitted

15

