Harvard CS 121 and CSCI E-207 Lecture 21: Nondeterministic Polynomial Time

Salil Vadhan (lecture given by Colin Jia Zheng)

November 15, 2012

• Reading: Sipser §7.3.

"Nondeterministic Time"

We say that a nondeterministic TM M decides a language L iff for every $w \in \Sigma^*$,

- 1. Every computation by M on input w halts (in state q_{accept} or state q_{reject});
- 2. $w \in L$ iff there exists at least one accepting computation by M on w.
- 3. $w \notin L$ iff every computation by M on w rejects (or dies, with no applicable transitions).

M decides *L* in <u>nondeterministic time</u> $t(\cdot)$ iff for every *w*, every computation by *M* on *w* takes at most t(|w|) steps.

More on Nondeterministic Time

- 1. Linear speedup holds.
- 2. "Polynomial equivalence" holds among nondeterministic models

e.g. L decided in time T by a nondeterministic multitape TM

 $\Rightarrow L$ decided in time $O(T^2)$ by a nondeterministic 1-tape TM

Definition:

 $\begin{aligned} \mathsf{NTIME}(t(n)) = \\ \{L: L \text{ is decided in time } t(n) \text{ by some nondet. multitape TM} \end{aligned}$

$$\mathsf{NP} = \bigcup_{\mathsf{polynomial}\ p} \mathsf{NTIME}(p) = \bigcup_{k \ge 0} \mathsf{NTIME}(n^k).$$

P vs. NP

- Clearly P ⊆ NP. But there are problems in NP that are not obviously in P (≠ "obviously not")
- TSP = TRAVELLING SALESMAN PROBLEM.
 - Let m > 0 be the number of <u>cities</u>,
 - $D: \{1, \ldots, m\}^2 \to \mathcal{N}$ give the <u>distance</u> D(i, j) between city i and city j, and
 - *B* be a distance <u>bound</u>

Then TSP =

 $\{\langle m, D, B \rangle : \exists \text{ tour of all cities of length } \leq B \}.$

Harvard CS 121 & CSCI E-207

Traveling Salesman Problem: Example

"tour" = visits every city and returns to starting point

There are many variants of TSP, eg require visiting every city exactly once, triangle inequality on distances...

TSP∈ NP

• Why is $TSP \in NP$?

Because if $\langle m, D, B \rangle \in \mathsf{TSP}$, the following nondeterministic strategy will accept in time $O(n^3)$, where $n = \mathsf{length}$ of representation of $\langle m, D, B \rangle$.

- nondeterministically write down a sequence of cities c_1, \ldots, c_t , for $t \le m^2$. ("guess")
- trace through that tour and verify that all cities are visited and the length is $\leq B$. If so, halt in q_{accept} . If not, halt in q_{reject} . (and "check")

If $\langle m, D, B \rangle \notin \mathsf{TSP}$, above has no accepting computations.

But any obvious <u>deterministic</u> version of this algorithm takes exponential time.

A useful characterization of NP

• A <u>verifier</u> for a language L is an algorithm V such that

 $L = \{x : V \text{ accepts } \langle x, y \rangle \text{ for some string } y\}.$

- A polynomial-time verifier is one that runs in time polynomial in |x| on input $\langle x, y \rangle$.
- A string *y* that makes V(⟨*x*, *y*⟩) accept is a "proof" or "certificate" that *x* ∈ *L*.
- Example: TSP

certificate y = ?

 $V(\langle x, y \rangle) =$?

• Without loss of generality, |y| is at most polynomial in |x|.

NP is the class of easily verified languages

• **Theorem:** NP equals the class of languages with polynomial-time verifiers.

Proof:

 \Rightarrow

 \Leftarrow

• "*L* is in NP iff members of *L* have short, efficiently verifiable certificates"

More problems in NP

• HAMILTONIAN CIRCUIT

 $HC = \{G : G \text{ is an undirected graph with a circuit that touches each node exactly once}\}.$

Really just a special case of TSP. (why?)

• We are not fussy about the precise method of representing a graph as a string, because all reasonable methods are within a polynomial of each other in length.

A "similar" problem that is in P

- EULERIAN CIRCUIT
 - $EC = \{G : G \text{ is an undirected graph with a circuit}$ that passes through each edge exactly once}.

It is easy to check if G is Eulerian...

So $EC \in P$.

Composite Numbers

• COMPOSITES = $\{w : w \text{ a composite number in binary } \}$. COMPOSITES $\in NP$

Not obviously in P, since an exhaustive search for factors can take time proportional to the <u>value</u> of w, which grows as $2^n = exponential$ in the size of w.

Only recently (2002), it was shown that COMPOSITES \in P (equivalently, PRIMES \in P).

Boolean logic

Boolean formulas

- **Def**: A <u>Boolean formula</u> (B.F.) is either:
- · a "Boolean variable" x, y, z, \ldots
- $\cdot (\alpha \lor \beta)$ where α, β are B.F.'s.
- $\cdot (\alpha \land \beta)$ where α, β are B.F.'s.
- $\cdot \neg \alpha$ where α is a B.F.

e.g.
$$(x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z)$$

[Omitting redundant parentheses]

Boolean satisfiability

Def: A truth assignment is a mapping $a : Boolean variables \rightarrow \{0, 1\}$. [0 = false, 1 = true]

The $\{0,1\}$ value of a B.F. γ on a truth assignment a is given by the usual rules of logic:

· If
$$\gamma$$
 is a variable x , then $\gamma(a) = a(x)$.

· If
$$\gamma = (\alpha \lor \beta)$$
, then $\gamma(a) = 1$ iff $\alpha(a) = 1$ or $\beta(a) = 1$.

· If
$$\gamma = (\alpha \land \beta)$$
, then $\gamma(a) = 1$ iff $\alpha(a) = 1$ and $\beta(a) = 1$.

· If $\gamma = \neg \alpha$, then $\gamma(a) = 1$ iff $\alpha(a) = 0$.

a <u>satisfies</u> γ (sometimes written $a \models \gamma$) iff $\gamma(a) = 1$.

In this case, γ is <u>satisfiable</u>. If no *a* satisfies γ , then γ is <u>unsatisfiable</u>.

Boolean Satisfiability

SAT = { $\alpha : \alpha$ is a satisfiable Boolean formula}.

Prop: SAT \in NP

Harvard CS 121 & CSCI E-207

A "similar" problem in P: 2-SAT

A 2-CNF formula is one that looks like $(x \lor y) \land (\neg y \lor z) \land (\neg y \lor \neg x)$

i.e., a conjunction of <u>clauses</u>, each of which is the disjunction of <u>2</u> literals (or 1 literal, since $(x) \equiv (x \lor x)$)

2-SAT = the set of satisfiable 2-CNF formulas.

e.g. $(x \lor y) \land (\neg x \lor \neg y) \land (\neg x \lor y) \land (x \lor \neg y) \notin \mathsf{SAT}$

$\textbf{2-SAT} \in \textbf{P}$

Method (resolution):

1. If x and $\neg x$ are both clauses, then <u>not</u> satisfiable

e.g. $(x) \land (z \lor y) \land (\neg x)$

- 2. If $(x \lor y) \land (\neg y \lor z)$ are both clauses, add clause $(x \lor z)$ (which is implied).
- 3. Repeat. If no contradiction emerges \Rightarrow satisfiable.

 $O(n^2)$ repetitions of step 2 since only 2 literals/clause.

Proof of correctness: omitted