Harvard CS 121 and CSCI E-207
Lecture 22: The P vs. NP Question
and NP-completeness

Salil Vadhan

November 20, 2012

e Reading: Sipser §7.4, §7.5.

e For “culture”. Computers and Intractability: A Guide to the
Theory of NP-completeness, by Garey & Johnson.

Harvard CS 121 & CSCI E-207 November 20, 2012

Pvs. NP

e We would like to solve problems in NP efficiently.
e We know P C NP.
e Problems in P can be solved “fairly” quickly.

e What is the relationship between P and NP?

Harvard CS 121 & CSCI E-207 November 20, 2012

NP and Exponential Time

Claim: NP C | J TIME(2™")
k

Proof:

Of course, this gets us nowhere near P.

Is P = NP?

..e., do all the NP problems have polynomial time algorithms?

It doesn’t “feel” that way but as of today there is no NP problem
that has been proven to require exponential time!

Harvard CS 121 & CSCI E-207 November 20, 2012

The Strange, Strange World if P = NP

Thousands of important languages can be decided in
polynomial time, e.g.

e SATISFIABILITY
e TRAVELLING SALESMAN
e HAMILTONIAN CIRCUIT

e MAP COLORING

Harvard CS 121 & CSCI E-207 November 20, 2012

If P = NP, then Searching becomes easy

Every “reasonable” search problem could be solved in
polynomial time.

e “reasonable” = solutions can be recognized in polynomial
time (and are of polynomial length)

e SAT SEARCH: Given a satisfiable boolean formula, find a
satisfying assignment.

e FACTORING: Given a natural number (in binary), find its
prime factorization.

e NASH EQUILIBRIUM: Given a two-player “game”, find a Nash
equilibrium.

Harvard CS 121 & CSCI E-207 November 20, 2012

If P = NP, Optimization becomes easy

Every “reasonable” optimization problem can be solved in
polynomial time.

e Optimization problem = “maximize (or minimize) f(x)
subject to certain constraints on z” (AM 121)

e “Reasonable” = “f and constraints are poly-time”
e MIN-TSP: Given a TSP instance, find the shortest tour.

e SCHEDULING: Given a list of assembly-line tasks and
dependencies, find the maximum-throughput scheduling.

e PROTEIN FOLDING: Given a protein, find the
minimum-energy folding.

e CIRCUIT MINIMIZATION: Given a digital circuit, find the
smallest equivalent circuit.

Harvard CS 121 & CSCI E-207 November 20, 2012

If P = NP, Secure Cryptography becomes impossible

Every polynomial-time encryption algorithm can be “broken” in
polynomial time.

e “Given an encryption z, find the corresponding decryption
key K and message m” is an NP search problem.

e Thus modern cryptography seeks to design encryption
algorithms that cannot be broken under the assumption that
certain NP problems are hard to solve (e.g. FACTORING).

e Take CS 220r.

Harvard CS 121 & CSCI E-207 November 20, 2012

If P = NP, Artificial Intelligence becomes easy

Machine learning is an NP search problem

e Given many examples of some concept (e.g. pairs (imagef,
“dog”), (image2, “person’), ...), classify new examples
correctly.

e Turns out to be equivalent to finding a short “classification
rule” consistent with examples.

e Take CS228.

Harvard CS 121 & CSCI E-207 November 20, 2012

If P = NP, Even Mathematics Becomes Easy!

Mathematical proofs can always be found in polynomial time
(in their length).

e SHORT PROOF: Given a mathematical statement S and a
number n (in unary), decide if S has a proof of length at most
n (and, if so, find one).

e An NP problem!

o cf. letter from Godel to von Neumann, 1956.

Harvard CS 121 & CSCI E-207 November 20, 2012

Godel’s Letter to Von Neumann, 55 years ago

[¢(n) = time required for a TM to determine whether a
mathematical statement has a proof of length n]

If there really were a machine with ¢(n) ~ k- n (or even ~ k - n?)
this would have consequences of the greatest importance.
Namely, it would obviously mean that in spite of the
undecidability of the Entscheidungsproblem, the mental work of a
mathematician concerning Yes-or-No questions could be
completely replaced by a machine. ...

It would be interesting to know, for instance, the situation
concerning the determination of primality of a number and how
strongly in general the number of steps in finite combinatorial
problems can be reduced with respect to simple exhaustive
search. ...

Harvard CS 121 & CSCI E-207 November 20, 2012

The World if P £ NP?

Q: If P £ NP, can we conclude anything about any specific
problems?

Idea: Try to find a “hardest” NP language.

* Just like A1), was the "hardest” Turing-recoginizable
language.

e Want L € NP such that L € P iff every NP language is in P.

10

Harvard CS 121 & CSCI E-207 November 20, 2012

Polynomial-time Reducibility

Def. L, <p L, iff there is a polynomial-time computable
function f : X7 — 33 s.t. forevery x € X3, x € L iff f(x) € Lo.

Proposition: If L; <p L, and L, € P, then L, € P.

Proof:

11

Harvard CS 121 & CSCI E-207 November 20, 2012

L1 <p Lo

r e L= f(x) € Lo
r¢ L= f(x) ¢ Loy
f computable in polynomial time

LoeP=L,ecP.

12

Harvard CS 121 & CSCI E-207 November 20, 2012

NP-Completeness

Def. L is NP-complete iff
1. L € NP and

2. Every language in NP is reducible to L in polynomial time.
(“L is NP-hard”)

Prop: Let L be any NP-complete language.
Then P =NP ifandonly if L € P.

13

Harvard CS 121 & CSCI E-207 November 20, 2012
Cook-Levin Theorem
(Stephen Cook 1971, Leonid Levin 1973)

Theorem: SAT (Boolean satisfiability) is NP-complete.

Proof: Need to show that every language in NP reduces to
SAT (!) Proof later.

14

Harvard CS 121 & CSCI E-207

More NP-complete problems

From now on we prove NP-completeness using:

Lemma: If we have the following
e Lisin NP
e Ly <p L for some NP-complete L

Then L is NP-complete.

Proof:

November 20, 2012

15

Harvard CS 121 & CSCI E-207 November 20, 2012
3-SAT

Def: A Boolean formula is in 3-CNF if it is of the form:

CtNCoyN...NC,,
where each clause C; is a disjunction (“or”) of 3 literals:
Ci = (CinVCi2V Ci3)

where each literal C;; is either
e a variable z, or

e the negation of a variable, —x.
eg. (xVyVz)A(—~zV-uVw)A(uVuVu)

3-SAT is the set of satisfiable 3-CNF formulas.

16

Harvard CS 121 & CSCI E-207 November 20, 2012

3-SAT is NP-complete

Proof: Show that SAT <p 3-SAT.

1. Given an arbitrary Boolean formula, e.g.

F=(-(xV-y A(zVw))V x).
1 23 4 5 6 7

2. Number the operators.

3. Select a new variable a; for each operator.
The variable «a; is supposed to mean “the subformula rooted at

operator i is true.”

4. Write a formula stating the relation between each subformula
and its children subformulas.

17

Harvard CS 121 & CSCI E-207 November 20, 2012

Reduction of SAT to 3-SAT, continued

For example, where

F ==V -y) Az Vw)) V —r),
1 23 4 5 67

((as=-y) A (er=-z))
A (ae=xVaz) N (a1 =-ay)
A (as=zVw) N (ag=aiVay)

\ N\ (CL4 = a9 /N\ CL5))

5. Let k£ be the number of the main operator/subformula of F..
(Note: k = 6 in the example)

18

Harvard CS 121 & CSCI E-207 November 20, 2012

Write I in 3-CNF to obtain F5

e Fact: Every function f : {0,1}* — {0, 1} can be written as a
k-CNF and as a k-DNF (OR of ANDs).
[albeit with possibly 2% clauses]

e Proof:

Output of the reduction: a; A Fo.

Q: Does this prove that every Boolean formula can be converted
to 3-CNF?

19

Harvard CS 121 & CSCI E-207 November 20, 2012

In contrast, 2-SAT c P

Method (resolution):

1. If x and —z are both clauses, then not satisfiable
e.g. (x) A(zVy) A (—x)

2. If (x Vy) A (—yV z) are both clauses, add clause (z V z2)
(which is implied).

3. Repeat. If no contradiction emerges = satisfiable.

O(n?) repetitions of step 2 since only 2 literals/clause.

Proof of correctness: omitted

20

