
Harvard CS 121 and CSCI E-207
Lecture 22: The P vs. NP Question

and NP-completeness

Salil Vadhan

November 20, 2012

• Reading: Sipser §7.4, §7.5.

• For “culture”: Computers and Intractability: A Guide to the
Theory of NP-completeness, by Garey & Johnson.



Harvard CS 121 & CSCI E-207 November 20, 2012

P vs. NP

• We would like to solve problems in NP efficiently.

• We know P ⊆ NP.

• Problems in P can be solved “fairly” quickly.

• What is the relationship between P and NP?

1



Harvard CS 121 & CSCI E-207 November 20, 2012

NP and Exponential Time

Claim: NP ⊆
⋃
k

TIME(2n
k
)

Proof:

Of course, this gets us nowhere near P.

Is P = NP?

i.e., do all the NP problems have polynomial time algorithms?

It doesn’t “feel” that way but as of today there is no NP problem
that has been proven to require exponential time!

2



Harvard CS 121 & CSCI E-207 November 20, 2012

The Strange, Strange World if P = NP

Thousands of important languages can be decided in
polynomial time, e.g.

• SATISFIABILITY

• TRAVELLING SALESMAN

• HAMILTONIAN CIRCUIT

• MAP COLORING

• ...

3



Harvard CS 121 & CSCI E-207 November 20, 2012

If P = NP, then Searching becomes easy

Every “reasonable” search problem could be solved in
polynomial time.

• “reasonable” ≡ solutions can be recognized in polynomial
time (and are of polynomial length)

• SAT SEARCH: Given a satisfiable boolean formula, find a
satisfying assignment.

• FACTORING: Given a natural number (in binary), find its
prime factorization.

• NASH EQUILIBRIUM: Given a two-player “game”, find a Nash
equilibrium.

• ...

4



Harvard CS 121 & CSCI E-207 November 20, 2012

If P = NP, Optimization becomes easy

Every “reasonable” optimization problem can be solved in
polynomial time.

• Optimization problem ≡ “maximize (or minimize) f(x)

subject to certain constraints on x” (AM 121)

• “Reasonable” ≡ “f and constraints are poly-time”

• MIN-TSP: Given a TSP instance, find the shortest tour.

• SCHEDULING: Given a list of assembly-line tasks and
dependencies, find the maximum-throughput scheduling.

• PROTEIN FOLDING: Given a protein, find the
minimum-energy folding.

• CIRCUIT MINIMIZATION: Given a digital circuit, find the
smallest equivalent circuit.

5



Harvard CS 121 & CSCI E-207 November 20, 2012

If P = NP, Secure Cryptography becomes impossible

Every polynomial-time encryption algorithm can be “broken” in
polynomial time.

• “Given an encryption z, find the corresponding decryption
key K and message m” is an NP search problem.

• Thus modern cryptography seeks to design encryption
algorithms that cannot be broken under the assumption that
certain NP problems are hard to solve (e.g. FACTORING).

• Take CS 220r.

6



Harvard CS 121 & CSCI E-207 November 20, 2012

If P = NP, Artificial Intelligence becomes easy

Machine learning is an NP search problem

• Given many examples of some concept (e.g. pairs (image1,
“dog”), (image2, “person”), ...), classify new examples
correctly.

• Turns out to be equivalent to finding a short “classification
rule” consistent with examples.

• Take CS228.

7



Harvard CS 121 & CSCI E-207 November 20, 2012

If P = NP, Even Mathematics Becomes Easy!

Mathematical proofs can always be found in polynomial time
(in their length).

• SHORT PROOF: Given a mathematical statement S and a
number n (in unary), decide if S has a proof of length at most
n (and, if so, find one).

• An NP problem!

• cf. letter from Gödel to von Neumann, 1956.

8



Harvard CS 121 & CSCI E-207 November 20, 2012

Gödel’s Letter to Von Neumann, 55 years ago

[φ(n) = time required for a TM to determine whether a
mathematical statement has a proof of length n]
. . .
If there really were a machine with φ(n) ∼ k · n (or even ∼ k · n2)
this would have consequences of the greatest importance.
Namely, it would obviously mean that in spite of the
undecidability of the Entscheidungsproblem, the mental work of a
mathematician concerning Yes-or-No questions could be
completely replaced by a machine. . . .

It would be interesting to know, for instance, the situation
concerning the determination of primality of a number and how
strongly in general the number of steps in finite combinatorial
problems can be reduced with respect to simple exhaustive
search. . . .

9



Harvard CS 121 & CSCI E-207 November 20, 2012

The World if P 6= NP?

Q: If P 6= NP, can we conclude anything about any specific
problems?

Idea: Try to find a “hardest” NP language.

• Just like ATM was the “hardest” Turing-recoginizable
language.

• Want L ∈ NP such that L ∈ P iff every NP language is in P.

10



Harvard CS 121 & CSCI E-207 November 20, 2012

Polynomial-time Reducibility

Def: L1 ≤P L2 iff there is a polynomial-time computable
function f : Σ∗

1 → Σ∗
2 s.t. for every x ∈ Σ∗

1, x ∈ L iff f(x) ∈ L2.

Proposition: If L1 ≤P L2 and L2 ∈ P, then L1 ∈ P.

Proof:

11



Harvard CS 121 & CSCI E-207 November 20, 2012

L1 ≤P L2

Lecture 14: Polynomial Reductions, NP-Completeness, and Cook’s Theorem 5

L1 ≤p L2

fΣ∗
1 Σ∗

2

L1 L2

x ∈ L1 ⇒ f(x) ∈ L2

x ∈ L1 ⇒ f(x) ∈ L2

f computable in polynomial time

L2 ∈ P ⇒ L1 ∈ P .

x ∈ L1⇒ f(x) ∈ L2

x /∈ L1⇒ f(x) /∈ L2

f computable in polynomial time

L2 ∈ P⇒ L1 ∈ P.
12



Harvard CS 121 & CSCI E-207 November 20, 2012

NP-Completeness

Def: L is NP-complete iff

1. L ∈ NP and

2. Every language in NP is reducible to L in polynomial time.
(“L is NP-hard”)

Prop: Let L be any NP-complete language.
Then P = NP if and only if L ∈ P.

13



Harvard CS 121 & CSCI E-207 November 20, 2012

Cook–Levin Theorem
(Stephen Cook 1971, Leonid Levin 1973)

Theorem: SAT (Boolean satisfiability) is NP-complete.

Proof: Need to show that every language in NP reduces to
SAT (!) Proof later.

 

14



Harvard CS 121 & CSCI E-207 November 20, 2012

More NP-complete problems

From now on we prove NP-completeness using:

Lemma: If we have the following

• L is in NP

• L0 ≤P L for some NP-complete L0

Then L is NP-complete.

Proof:

15



Harvard CS 121 & CSCI E-207 November 20, 2012

3-SAT

Def: A Boolean formula is in 3-CNF if it is of the form:

C1 ∧ C2 ∧ . . . ∧ Cn

where each clause Ci is a disjunction (“or”) of 3 literals:

Ci = (Ci1 ∨ Ci2 ∨ Ci3)

where each literal Cij is either

• a variable x, or

• the negation of a variable, ¬x.

e.g. (x ∨ y ∨ z) ∧ (¬x ∨ ¬u ∨ w) ∧ (u ∨ u ∨ u)

3-SAT is the set of satisfiable 3-CNF formulas.
16



Harvard CS 121 & CSCI E-207 November 20, 2012

3-SAT is NP-complete

Proof: Show that SAT ≤P 3-SAT.

1. Given an arbitrary Boolean formula, e.g.

F = (¬((x ∨ ¬y) ∧ (z ∨w)) ∨ ¬x).
1 2 3 4 5 6 7

2. Number the operators.

3. Select a new variable ai for each operator.
The variable ai is supposed to mean “the subformula rooted at
operator i is true.”

4. Write a formula stating the relation between each subformula
and its children subformulas.

17



Harvard CS 121 & CSCI E-207 November 20, 2012

Reduction of SAT to 3-SAT, continued

For example, where

F = (¬((x ∨ ¬y) ∧ (z ∨w)) ∨ ¬x),
1 2 3 4 5 6 7

F1 =


(a3 ≡ ¬y) ∧ (a7 ≡ ¬x)

∧ (a2 ≡ x ∨ a3) ∧ (a1 ≡ ¬a4)
∧ (a5 ≡ z ∨ w) ∧ (a6 ≡ a1 ∨ a7)
∧ (a4 ≡ a2 ∧ a5)


5. Let k be the number of the main operator/subformula of F .

(Note: k = 6 in the example)

18



Harvard CS 121 & CSCI E-207 November 20, 2012

Write F1 in 3-CNF to obtain F2

• Fact: Every function f : {0, 1}k → {0, 1} can be written as a
k-CNF and as a k-DNF (OR of ANDs).
[albeit with possibly 2k clauses]

• Proof:

Output of the reduction: ak ∧ F2.

Q: Does this prove that every Boolean formula can be converted
to 3-CNF?

19



Harvard CS 121 & CSCI E-207 November 20, 2012

In contrast, 2-SAT ∈ P

Method (resolution):

1. If x and ¬x are both clauses, then not satisfiable

e.g. (x) ∧ (z ∨ y) ∧ (¬x)

2. If (x ∨ y) ∧ (¬y ∨ z) are both clauses, add clause (x ∨ z)
(which is implied).

3. Repeat. If no contradiction emerges⇒ satisfiable.

O(n2) repetitions of step 2 since only 2 literals/clause.

Proof of correctness: omitted

20


