Harvard CS 121 and CSCI E-207
Lecture 22: The P vs. NP Question
and NP-completeness

Salil Vadhan

November 20, 2012

e Reading: Sipser §7.4, §7.5.

e For “culture”. Computers and Intractability: A Guide to the
Theory of NP-completeness, by Garey & Johnson.
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Pvs. NP

e We would like to solve problems in NP efficiently.
e We know P C NP.
e Problems in P can be solved “fairly” quickly.

e What is the relationship between P and NP?
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NP and Exponential Time

Claim: NP C | J TIME(2™")
k

Proof:

Of course, this gets us nowhere near P.

Is P = NP?

..e., do all the NP problems have polynomial time algorithms?

It doesn’t “feel” that way but as of today there is no NP problem
that has been proven to require exponential time!
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The Strange, Strange World if P = NP

Thousands of important languages can be decided in
polynomial time, e.g.

e SATISFIABILITY
e TRAVELLING SALESMAN
e HAMILTONIAN CIRCUIT

e MAP COLORING
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If P = NP, then Searching becomes easy

Every “reasonable” search problem could be solved in
polynomial time.

e “reasonable” = solutions can be recognized in polynomial
time (and are of polynomial length)

e SAT SEARCH: Given a satisfiable boolean formula, find a
satisfying assignment.

e FACTORING: Given a natural number (in binary), find its
prime factorization.

e NASH EQUILIBRIUM: Given a two-player “game”, find a Nash
equilibrium.
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If P = NP, Optimization becomes easy

Every “reasonable” optimization problem can be solved in
polynomial time.

e Optimization problem = “maximize (or minimize) f(x)
subject to certain constraints on z” (AM 121)

e “Reasonable” = “f and constraints are poly-time”
e MIN-TSP: Given a TSP instance, find the shortest tour.

e SCHEDULING: Given a list of assembly-line tasks and
dependencies, find the maximum-throughput scheduling.

e PROTEIN FOLDING: Given a protein, find the
minimum-energy folding.

e CIRCUIT MINIMIZATION: Given a digital circuit, find the
smallest equivalent circuit.
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If P = NP, Secure Cryptography becomes impossible

Every polynomial-time encryption algorithm can be “broken” in
polynomial time.

e “Given an encryption z, find the corresponding decryption
key K and message m” is an NP search problem.

e Thus modern cryptography seeks to design encryption
algorithms that cannot be broken under the assumption that
certain NP problems are hard to solve (e.g. FACTORING).

e Take CS 220r.
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If P = NP, Artificial Intelligence becomes easy

Machine learning is an NP search problem

e Given many examples of some concept (e.g. pairs (imagef,
“dog”), (image2, “person’), ...), classify new examples
correctly.

e Turns out to be equivalent to finding a short “classification
rule” consistent with examples.

e Take CS228.
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If P = NP, Even Mathematics Becomes Easy!

Mathematical proofs can always be found in polynomial time
(in their length).

e SHORT PROOF: Given a mathematical statement S and a
number n (in unary), decide if S has a proof of length at most
n (and, if so, find one).

e An NP problem!

o cf. letter from Godel to von Neumann, 1956.
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Godel’s Letter to Von Neumann, 55 years ago

[¢(n) = time required for a TM to determine whether a
mathematical statement has a proof of length n]

If there really were a machine with ¢(n) ~ k- n (or even ~ k - n?)
this would have consequences of the greatest importance.
Namely, it would obviously mean that in spite of the
undecidability of the Entscheidungsproblem, the mental work of a
mathematician concerning Yes-or-No questions could be
completely replaced by a machine. ...

It would be interesting to know, for instance, the situation
concerning the determination of primality of a number and how
strongly in general the number of steps in finite combinatorial
problems can be reduced with respect to simple exhaustive
search. ...
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The World if P £ NP?

Q: If P £ NP, can we conclude anything about any specific
problems?

Idea: Try to find a “hardest” NP language.

* Just like A1), was the "hardest” Turing-recoginizable
language.

e Want L € NP such that L € P iff every NP language is in P.

10
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Polynomial-time Reducibility

Def. L, <p L, iff there is a polynomial-time computable
function f : X7 — 33 s.t. forevery x € X3, x € L iff f(x) € Lo.

Proposition: If L; <p L, and L, € P, then L, € P.

Proof:

11
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L1 <p Lo

r e L= f(x) € Lo
r¢ L= f(x) ¢ Loy
f computable in polynomial time

LoeP=L,ecP.

12
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NP-Completeness

Def. L is NP-complete iff
1. L € NP and

2. Every language in NP is reducible to L in polynomial time.
(“L is NP-hard”)

Prop: Let L be any NP-complete language.
Then P =NP ifandonly if L € P.

13
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Cook-Levin Theorem
(Stephen Cook 1971, Leonid Levin 1973)

Theorem: SAT (Boolean satisfiability) is NP-complete.

Proof: Need to show that every language in NP reduces to
SAT (!) Proof later.

14
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More NP-complete problems

From now on we prove NP-completeness using:

Lemma: If we have the following
e Lisin NP
e Ly <p L for some NP-complete L

Then L is NP-complete.

Proof:

November 20, 2012

15
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3-SAT

Def: A Boolean formula is in 3-CNF if it is of the form:

CtNCoyN...NC,,
where each clause C; is a disjunction (“or”) of 3 literals:
Ci = (CinVCi2V Ci3)

where each literal C;; is either
e a variable z, or

e the negation of a variable, —x.
eg. (xVyVz)A(—~zV-uVw)A(uVuVu)

3-SAT is the set of satisfiable 3-CNF formulas.

16
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3-SAT is NP-complete

Proof: Show that SAT <p 3-SAT.

1. Given an arbitrary Boolean formula, e.g.

F=(-(xV-y A(zVw))V x).
1 23 4 5 6 7

2. Number the operators.

3. Select a new variable a; for each operator.
The variable «a; is supposed to mean “the subformula rooted at

operator i is true.”

4. Write a formula stating the relation between each subformula
and its children subformulas.

17
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Reduction of SAT to 3-SAT, continued

For example, where

F ==V -y) Az Vw)) V —r),
1 23 4 5 67

( (as=-y) A (er=-z) )
A (ae=xVaz) N (a1 =-ay)
A (as=zVw) N (ag=aiVay)

\ N\ (CL4 = a9 /N\ CL5) )

5. Let k£ be the number of the main operator/subformula of F..
(Note: k = 6 in the example)

18
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Write I in 3-CNF to obtain F5

e Fact: Every function f : {0,1}* — {0, 1} can be written as a
k-CNF and as a k-DNF (OR of ANDs).
[albeit with possibly 2% clauses]

e Proof:

Output of the reduction: a; A Fo.

Q: Does this prove that every Boolean formula can be converted
to 3-CNF?

19
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In contrast, 2-SAT c P

Method (resolution):

1. If x and —z are both clauses, then not satisfiable
e.g. (x) A(zVy) A (—x)

2. If (x Vy) A (—yV z) are both clauses, add clause (z V z2)
(which is implied).

3. Repeat. If no contradiction emerges = satisfiable.

O(n?) repetitions of step 2 since only 2 literals/clause.

Proof of correctness: omitted

20



