Harvard CS 121 and CSCI E-207 Lecture 7: Non-Regular Languages

Salil Vadhan

September 25, 2012

• **Reading:** Sipser, §4.2 "The Diagonalization Method," pages 174–178 (from just before Definition 4.12 until just before Corollary 4.18) and §1.4.

Countable Unions of Countable Sets

Proposition: The union of countably many countable sets is countable.

Proof:

Harvard CS 121 & CSCI E-207

Are there uncountable sets? (Infinite but not countably infinite)

Theorem: $P(\mathcal{N})$ is uncountable

(The set of all sets of natural numbers)

Proof by contradiction:

(i.e. assume that $P(\mathcal{N})$ is countable and show that this results in a contradiction)

- Suppose that $P(\mathcal{N})$ were countable.
- Then there is an enumeration of all subsets of \mathcal{N} say $P(\mathcal{N}) = \{S_0, S_1, \ldots\}$

Diagonalization

- Let $D = \{i \in \mathcal{N} : i \in S_i\}$ be the diagonal.
- $D = YNNY \ldots = \{0, 3, \ldots\}$
- Let $\overline{D} = \mathcal{N} D$ be its complement.
- $\overline{D} = NYYN \ldots = \{1, 2, \ldots\}$
- Claim: \overline{D} is omitted from the enumeration, contradicting the assumption that every set of natural numbers is one of the S_i s.

Pf: \overline{D} is different from each row because they differ at the diagonal.

Cardinality of Languages

- An alphabet Σ is finite by definition
- **Proposition:** Σ^* is countably infinite. **Proof:**

- So every language is either finite or countably infinite
- $P(\Sigma^*)$ is uncountable, being the set of subsets of a countable infinite set.

i.e. There are uncountably many languages over any alphabet

Q: Even if $|\Sigma| = 1$?

Existence of Non-regular Languages

Theorem: For every alphabet Σ , there exists a non-regular language over Σ .

Proof:

- There are only countably many regular expressions over Σ .
 - \Rightarrow There are only countably many regular languages over Σ .
- There are uncountably many languages over Σ .
- Thus at least one language must be non-regular.

In fact, "almost all" languages must be non-regular.

Existence of Non-regular Languages

Theorem: For every alphabet Σ , there exists a non-regular language over Σ .

Q: Could we do this proof using DFAs instead?

Q: Can we get our hands on an *explicit* non-regular language?

Goal: Explicit Non-Regular Languages

It **appears** that a language such as

$$L = \{x \in \Sigma^* : |x| = 2^n \text{ for some } n \ge 0\}$$

 $= \{a, b, aa, ab, ba, bb, aaaa, \dots, bbbb, aaaaaaaaa, \dots\}$

can't be regular because the "gaps" in the set of possible lengths become arbitrarily large, and no DFA could keep track of them.

But this isn't a proof!

Approach:

- 1. Prove some general property P of all regular languages.
- 2. Show that L does <u>not</u> have P.

Pumping Lemma (Basic Version)

If *L* is regular, then there is a number *p* (the pumping length) such that every string $s \in L$ of length at least *p* can be divided into s = xyz, where $y \neq \varepsilon$ and for every $n \ge 0$, $xy^n z \in L$.

- Why is the part about *p* needed?
- Why is the part about $y \neq \varepsilon$ needed?

Pumping Lemma Example

• Consider

 $L = \{x : x \text{ has an even # of } a$'s and an odd # of b's $\}$

Since L is regular, pumping lemma holds.

(i.e, every sufficiently long string s in L is "pumpable")

• For example, if s = aab, we can write $x = \varepsilon$, y = aa, and z = b.

Pumping the even *a*'s, odd *b*'s language

- Claim: L satisfies pumping lemma with pumping length p = 4.
- Proof:

• **Q:** Can the Pumping Lemma be used to prove that *L* is regular?