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• Reading: Sipser, §4.2 “The Diagonalization Method,” pages
174–178 (from just before Definition 4.12 until just before
Corollary 4.18) and §1.4.
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Countable Unions of Countable Sets

Proposition: The union of countably many countable sets is
countable.

Proof:
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Are there uncountable sets?
(Infinite but not countably infinite)

Theorem: P (N ) is uncountable
(The set of all sets of natural numbers)

Proof by contradiction:

(i.e. assume that P (N ) is countable and show that this
results in a contradiction)

• Suppose that P (N ) were countable.

• Then there is an enumeration of all subsets of N say
P (N ) = {S0, S1, . . .}
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Diagonalization

Countability 3

Are there uncountable sets?
(Infinite but not countably infinite)

YES!

Theorem: P (N) is uncountable
(The set of all sets of natural numbers)

Proof by contradiction:

(i.e. assume that P (N) is countable and show that this results in a contradiction)

• Suppose that P (N) were countable.

• Then there is an enumeration of all subsets of N say P (N) = {S0, S1, . . .}

. . .

. . .

. . .

. . .

...

Si

S0

S1

S2

S3

j = 0 1 2 3 4

Y N N Y N

N N N N N

Y Y N Y Y

N N N Y N

D

“Y ” in cell (i, j) means j ∈ Si

• Let D = {i ∈ N : i ∈ Si} be the diagonal.

D = Y NNY . . . = {0, 3, . . .}

• Let D = N − D be its complement.

D = NY Y N . . . = {1, 2, . . .}

• Claim: D is omitted from the enumeration.

Pf: D is different from each row because they differ at the diagonal.

“Y ” in row i, column j means j ∈ Si

• Let D = {i ∈ N : i ∈ Si} be the diagonal.

• D = Y NNY . . . = {0, 3, . . .}

• Let D = N −D be its complement.

• D = NY Y N . . . = {1, 2, . . .}

• Claim: D is omitted from the enumeration, contradicting the assumption
that every set of natural numbers is one of the Sis.

Pf: D is different from each row because they differ at the diagonal.
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Cardinality of Languages

• An alphabet Σ is finite by definition

• Proposition: Σ∗ is countably infinite.
Proof:

• So every language is either finite or countably infinite

• P (Σ∗) is uncountable, being the set of subsets of a countable
infinite set.

i.e. There are uncountably many languages over any
alphabet
Q: Even if |Σ| = 1?
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Existence of Non-regular Languages

Theorem: For every alphabet Σ, there exists a non-regular
language over Σ.

Proof:

• There are only countably many regular expressions over Σ.

⇒ There are only countably many regular languages over Σ.

• There are uncountably many languages over Σ.

• Thus at least one language must be non-regular.

In fact, “almost all” languages must be non-regular.
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Existence of Non-regular Languages

Theorem: For every alphabet Σ, there exists a non-regular
language over Σ.

Q: Could we do this proof using DFAs instead?

Q: Can we get our hands on an explicit non-regular language?
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Goal: Explicit Non-Regular Languages

It appears that a language such as

L = {x ∈ Σ∗ : |x| = 2n for some n ≥ 0}
= {a, b, aa, ab, ba, bb, aaaa, . . . , bbbb, aaaaaaaa, . . .}

can’t be regular because the “gaps” in the set of possible
lengths become arbitrarily large, and no DFA could keep track
of them.

But this isn’t a proof!

Approach:

1. Prove some general property P of all regular languages.

2. Show that L does not have P .
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Pumping Lemma (Basic Version)

If L is regular, then there is a number p (the pumping length)
such that

every string s ∈ L of length at least p
can be divided into s = xyz, where y 6= ε and

for every n ≥ 0, xynz ∈ L.

n = 1 x y z

n = 0 x z

n = 2 x y y z

. . .

• Why is the part about p needed?

• Why is the part about y 6= ε needed?
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Pumping Lemma Example

• Consider

L = {x : x has an even # of a’s and an odd # of b’s}

• Since L is regular, pumping lemma holds.

(i.e, every sufficiently long string s in L is “pumpable”)

• For example, if s = aab, we can write x = ε, y = aa, and z = b.
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Pumping the even a’s, odd b’s language

• Claim: L satisfies pumping lemma with pumping length p = 4.

• Proof:

• Q: Can the Pumping Lemma be used to prove that L is
regular?
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