
Harvard CS 121 and CSCI E-207
Lecture 20: Polynomial Time

Salil Vadhan
(lecture given by Thomas Steinke)

November 13, 2012



Harvard CS 121 & CSCI E-207 November 13, 2012

Review of Asymptotic Notation

For f, g : N → R+

• f = O(g): ∃c > 0 s.t. f(n) ≤ c · g(n) for all sufficiently large n.

• f = Ω(g): g = O(f)

• f = Θ(g): f = O(g) and g = O(f)

• f = o(g): ∀c > 0 we have f(n) ≤ c · g(n) for all sufficiently
large n. Equivalently, limn→∞ f(n)/g(n) = 0.

• f = ω(g): g = o(f). Equivalently, limn→∞ f(n)/g(n) =∞.

Which of the following implies the other?

• limn→∞ f(n)/g(n) = t for some 0 < t <∞.

• f = Θ(g).

1



Harvard CS 121 & CSCI E-207 November 13, 2012

Asymptotic Notation within Expressions

When we use asymptotic notation within an expression, the
asymptotic notation is shorthand for an unspecified function
satisfying the relation.

• nO(1) means...

• n2 + Ω(n) means n2 + g(n) for some function g(n) such that
g(n) = Ω(n).

• 2(1−o(1))n means 2(1−ε(n))·n for some function ε(n) such that
ε(n)→ 0 as n→∞.

2



Harvard CS 121 & CSCI E-207 November 13, 2012

Asymptotic Notation on Both Sides

When we use asymptotic notation on both sides of an
equation, it means that for all choices of the unspecified
functions in the left-hand side, we get a valid asymptotic
relation.

• n2/2 +O(n) = Ω(n2) because for every function f such that
f(n) = O(n), we have n2/2 + f(n) = Ω(n2).

• But it is not true that Ω(n2) = n2/2 +O(n).

3



Harvard CS 121 & CSCI E-207 November 13, 2012

TIME and Big-O

• Recall: Let t : N → R+. Then TIME(t) is the class of
languages L that can be decided by some multitape TM with
running time ≤ t(n) for inputs of size n.

• “Table lookup” shows that using more states we can get
t(n) = n for finitely many n.

• Linear Speedup Theorem shows that using more states and a
larger tape alphabet we can reduce t(n) by a constant factor
(as long as t(n) is not too small).

• So TIME(O(t(n))) = TIME(t(n)) for t(n) not too small (e.g.
t(n) ≥ 1.1n).

• What about more tapes?
4



Harvard CS 121 & CSCI E-207 November 13, 2012

Time-bounded Simulations

Q: How quickly can a 1-tape TM M2 simulate a multitape TM M1?

• If M1 uses f(n) time, then it uses ≤ f(n) tape cells

• M2 simulates one step of M1 by a complete sweep of its tape.
This takes O(f(n)) steps.

∴ M2 uses ≤ f(n) · O(f(n)) = O(f2(n)) steps in all.

So L ∈ TIMEmultitape TM(f)⇒ L ∈ TIME1-tape TM(O(f2))

Similarly O(fk) for

• 2-D Tapes

• Random Access TMs . . .
5



Harvard CS 121 & CSCI E-207 November 13, 2012

Basic thesis of complexity theory

Extended Church-Turing Thesis: Every “reasonable” model
of computation can be simulated on a Turing machine with only
a polynomial slowdown.

Counterexamples?

• Randomized computation.

• Parallel computation.

• Analog computers.

• DNA computers.

• Quantum computers.

Should qualify thesis with “sequential and deterministic”.

6



Harvard CS 121 & CSCI E-207 November 13, 2012

Polynomial Time

• Def: Let P =
⋃
p

TIME(p), where p is a polynomial

=
⋃
k≥0

TIME(nk)

• also known as PTIME or P

• Coarse approximation to “efficient”:

7



Harvard CS 121 & CSCI E-207 November 13, 2012

Model Independence of P

Although P is defined in terms of TM time, P is a stable class,
independent of the computational model.
(Provided the model is reasonable.)

Justification:

• If A and B are different models of computation,
L ∈ TIMEA(p1(n)), and B can simulate a time t computation of
A in time p2(t), then L ∈ TIMEB(p2(p1(n))).

• Polynomials are closed under composition, e.g.
f(n) = n2, g(n) = n3 + 1⇒ f(g(n)) = (n3 + 1)2 = n6 + 2n3 + 1.

8



Harvard CS 121 & CSCI E-207 November 13, 2012

How much does representation matter?

• How big is the representation of an n-node directed graph?

• . . . as a list of edges?

• . . . as an adjacency matrix?

• How big is the representation of a natural number n?

• . . . in binary?

• . . . in decimal?

• . . . in unary?

9



Harvard CS 121 & CSCI E-207 November 13, 2012

Describing & Analyzing Polynomial-Time Algorithms

• Due to Extended Church-Turing Thesis, we can use high-level
descriptions.

• Freely use algorithms we’ve seen as subroutines, if we (or you)
have analyzed their running time.

• Bound the total number of high-level steps (including # of loop
iterations), and the running time of each step.

• Be careful about the size of data.

• “poly(n) executions of poly(n)-time algorithms on
poly(n)-sized inputs takes time poly(n)”

10



Harvard CS 121 & CSCI E-207 November 13, 2012

For which of the following do we know polynomial-time
algorithms?

• Given a DFA M and a string w, decide whether M accepts w.

• What is the “size” of a DFA?

• Given an NFA N , construct an equivalent DFA M .

• This is a function, not a language.
11



Harvard CS 121 & CSCI E-207 November 13, 2012

More problems about regular languages: are they in P?

• Given an NFA N and a string w, decide whether N accepts w.

• Given a regular expression R, construct an equivalent NFA N .

12



Harvard CS 121 & CSCI E-207 November 13, 2012

Problems about context-free languages: are they in P?

• Given a string w, decide whether w ∈ L(G) for a fixed CFG G?

• What if G is part of the input?

13



Harvard CS 121 & CSCI E-207 November 13, 2012

Problems about arithmetic: are they in P?

• Given two numbers N,M , compute their product.

• What is the “size” of the numbers?

• Given a number N , decide if N is prime.

• Given a number N , compute N ’s prime factorization.

14



Harvard CS 121 & CSCI E-207 November 13, 2012

A bogus polynomial-time algorithm

Consider the following algorithm on input an n-bit number z:

• Repeat n times: let z ← z × z (using grade-school
multiplication algorithm)

“Proof” that this algorithm is polynomial time:

• The loop has n iterations.

• Each time we multiply, which takes time O(n2).

• Total time = n ·O(n2) = O(n3).

Where is the error?

15



Harvard CS 121 & CSCI E-207 November 13, 2012

Another way of looking at P

• Multiplicative increases in time or computing power yield
multiplicative increases in the size of problems that can be
solved

• If L is in P, then there is a constant factor k > 1 such that

• If you can solve problems of size s within a given amount of
time

• and you are given a computer that runs twice as fast, then

• you can solve problems of size k · s on the new machine in
the same amount of time.

• E.g. if L is decidable in O(nd) time, then with twice as much
time you can solve problems 21/d as large

16



Harvard CS 121 & CSCI E-207 November 13, 2012

Exponential time

• E = ∪c>0TIME(cn)

• For problems in E, a multiplicative increase in computing
power yields only an additive increase in the size of problems
that can be solved.

• If L is in E, then there is a constant k such that

• If you can solve problems of size s within a given amount of
time

• and you are given a computer that runs twice as fast, then

• you can solve problems only of size k + s on the new
machine using the same amount of time.

17


