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Review of Asymptotic Notation

For f, g : N → R+

• f = O(g): ∃c > 0 s.t. f(n) ≤ c · g(n) for all sufficiently large n.

• f = Ω(g): g = O(f)

• f = Θ(g): f = O(g) and g = O(f)

• f = o(g): ∀c > 0 we have f(n) ≤ c · g(n) for all sufficiently
large n. Equivalently, limn→∞ f(n)/g(n) = 0.

• f = ω(g): g = o(f). Equivalently, limn→∞ f(n)/g(n) =∞.

Which of the following implies the other?

• limn→∞ f(n)/g(n) = t for some 0 < t <∞.

• f = Θ(g).
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Asymptotic Notation within Expressions

When we use asymptotic notation within an expression, the
asymptotic notation is shorthand for an unspecified function
satisfying the relation.

• nO(1) means...

• n2 + Ω(n) means n2 + g(n) for some function g(n) such that
g(n) = Ω(n).

• 2(1−o(1))n means 2(1−ε(n))·n for some function ε(n) such that
ε(n)→ 0 as n→∞.
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Asymptotic Notation on Both Sides

When we use asymptotic notation on both sides of an
equation, it means that for all choices of the unspecified
functions in the left-hand side, we get a valid asymptotic
relation.

• n2/2 +O(n) = Ω(n2) because for every function f such that
f(n) = O(n), we have n2/2 + f(n) = Ω(n2).

• But it is not true that Ω(n2) = n2/2 +O(n).
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TIME and Big-O

• Recall: Let t : N → R+. Then TIME(t) is the class of
languages L that can be decided by some multitape TM with
running time ≤ t(n) for inputs of size n.

• “Table lookup” shows that using more states we can get
t(n) = n for finitely many n.

• Linear Speedup Theorem shows that using more states and a
larger tape alphabet we can reduce t(n) by a constant factor
(as long as t(n) is not too small).

• So TIME(O(t(n))) = TIME(t(n)) for t(n) not too small (e.g.
t(n) ≥ 1.1n).

• What about more tapes?
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Time-bounded Simulations

Q: How quickly can a 1-tape TM M2 simulate a multitape TM M1?

• If M1 uses f(n) time, then it uses ≤ f(n) tape cells

• M2 simulates one step of M1 by a complete sweep of its tape.
This takes O(f(n)) steps.

∴ M2 uses ≤ f(n) · O(f(n)) = O(f2(n)) steps in all.

So L ∈ TIMEmultitape TM(f)⇒ L ∈ TIME1-tape TM(O(f2))

Similarly O(fk) for

• 2-D Tapes

• Random Access TMs . . .
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Basic thesis of complexity theory

Extended Church-Turing Thesis: Every “reasonable” model
of computation can be simulated on a Turing machine with only
a polynomial slowdown.

Counterexamples?

• Randomized computation.

• Parallel computation.

• Analog computers.

• DNA computers.

• Quantum computers.

Should qualify thesis with “sequential and deterministic”.
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Polynomial Time

• Def: Let P =
⋃
p

TIME(p), where p is a polynomial

=
⋃
k≥0

TIME(nk)

• also known as PTIME or P

• Coarse approximation to “efficient”:
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Model Independence of P

Although P is defined in terms of TM time, P is a stable class,
independent of the computational model.
(Provided the model is reasonable.)

Justification:

• If A and B are different models of computation,
L ∈ TIMEA(p1(n)), and B can simulate a time t computation of
A in time p2(t), then L ∈ TIMEB(p2(p1(n))).

• Polynomials are closed under composition, e.g.
f(n) = n2, g(n) = n3 + 1⇒ f(g(n)) = (n3 + 1)2 = n6 + 2n3 + 1.
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How much does representation matter?

• How big is the representation of an n-node directed graph?

• . . . as a list of edges?

• . . . as an adjacency matrix?

• How big is the representation of a natural number n?

• . . . in binary?

• . . . in decimal?

• . . . in unary?

9



Harvard CS 121 & CSCI E-207 November 13, 2012

Describing & Analyzing Polynomial-Time Algorithms

• Due to Extended Church-Turing Thesis, we can use high-level
descriptions.

• Freely use algorithms we’ve seen as subroutines, if we (or you)
have analyzed their running time.

• Bound the total number of high-level steps (including # of loop
iterations), and the running time of each step.

• Be careful about the size of data.

• “poly(n) executions of poly(n)-time algorithms on
poly(n)-sized inputs takes time poly(n)”
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For which of the following do we know polynomial-time
algorithms?

• Given a DFA M and a string w, decide whether M accepts w.

• What is the “size” of a DFA?

• Given an NFA N , construct an equivalent DFA M .

• This is a function, not a language.
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More problems about regular languages: are they in P?

• Given an NFA N and a string w, decide whether N accepts w.

• Given a regular expression R, construct an equivalent NFA N .

12



Harvard CS 121 & CSCI E-207 November 13, 2012

Problems about context-free languages: are they in P?

• Given a string w, decide whether w ∈ L(G) for a fixed CFG G?

• What if G is part of the input?
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Problems about arithmetic: are they in P?

• Given two numbers N,M , compute their product.

• What is the “size” of the numbers?

• Given a number N , decide if N is prime.

• Given a number N , compute N ’s prime factorization.
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A bogus polynomial-time algorithm

Consider the following algorithm on input an n-bit number z:

• Repeat n times: let z ← z × z (using grade-school
multiplication algorithm)

“Proof” that this algorithm is polynomial time:

• The loop has n iterations.

• Each time we multiply, which takes time O(n2).

• Total time = n ·O(n2) = O(n3).

Where is the error?
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Another way of looking at P

• Multiplicative increases in time or computing power yield
multiplicative increases in the size of problems that can be
solved

• If L is in P, then there is a constant factor k > 1 such that

• If you can solve problems of size s within a given amount of
time

• and you are given a computer that runs twice as fast, then

• you can solve problems of size k · s on the new machine in
the same amount of time.

• E.g. if L is decidable in O(nd) time, then with twice as much
time you can solve problems 21/d as large
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Exponential time

• E = ∪c>0TIME(cn)

• For problems in E, a multiplicative increase in computing
power yields only an additive increase in the size of problems
that can be solved.

• If L is in E, then there is a constant k such that

• If you can solve problems of size s within a given amount of
time

• and you are given a computer that runs twice as fast, then

• you can solve problems only of size k + s on the new
machine using the same amount of time.
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