Harvard CS 121 and CSCI E-207 Lecture 20: Polynomial Time

Salil Vadhan (lecture given by Thomas Steinke)

November 13, 2012

Review of Asymptotic Notation

For $f,g:\mathcal{N}\to\mathcal{R}^+$

- f = O(g): $\exists c > 0$ s.t. $f(n) \le c \cdot g(n)$ for all sufficiently large n.
- $f = \Omega(g)$: g = O(f)
- $f = \Theta(g)$: f = O(g) and g = O(f)
- f = o(g): $\forall c > 0$ we have $f(n) \leq c \cdot g(n)$ for all sufficiently large n. Equivalently, $\lim_{n \to \infty} f(n)/g(n) = 0$.
- $f = \omega(g)$: g = o(f). Equivalently, $\lim_{n \to \infty} f(n)/g(n) = \infty$.

Which of the following implies the other?

• $\lim_{n \to \infty} f(n)/g(n) = t$ for some $0 < t < \infty$.

•
$$f = \Theta(g)$$
.

Asymptotic Notation within Expressions

When we use asymptotic notation within an expression, the asymptotic notation is shorthand for an unspecified function satisfying the relation.

- $n^{O(1)}$ means...
- $n^2 + \Omega(n)$ means $n^2 + g(n)$ for some function g(n) such that $g(n) = \Omega(n)$.
- $2^{(1-o(1))n}$ means $2^{(1-\epsilon(n))\cdot n}$ for some function $\epsilon(n)$ such that $\epsilon(n) \to 0$ as $n \to \infty$.

Asymptotic Notation on Both Sides

When we use asymptotic notation on both sides of an equation, it means that for all choices of the unspecified functions in the left-hand side, we get a valid asymptotic relation.

- $n^2/2 + O(n) = \Omega(n^2)$ because for every function f such that f(n) = O(n), we have $n^2/2 + f(n) = \Omega(n^2)$.
- But it is not true that $\Omega(n^2) = n^2/2 + O(n)$.

TIME and Big-O

- Recall: Let $t : \mathcal{N} \to \mathcal{R}^+$. Then $\mathsf{TIME}(t)$ is the class of languages L that can be decided by some <u>multitape</u> TM with running time $\leq t(n)$ for inputs of size n.
- "Table lookup" shows that using more states we can get t(n) = n for finitely many n.
- Linear Speedup Theorem shows that using more states and a larger tape alphabet we can reduce t(n) by a constant factor (as long as t(n) is not too small).
- So TIME(O(t(n))) = TIME(t(n)) for t(n) not too small (e.g. $t(n) \ge 1.1n$).
- What about more tapes?

Time-bounded Simulations

Q: How quickly can a 1-tape TM M_2 simulate a multitape TM M_1 ?

- If M_1 uses f(n) time, then it uses $\leq f(n)$ tape cells
- M_2 simulates one step of M_1 by a complete sweep of its tape. This takes $\mathcal{O}(f(n))$ steps.

$$\therefore M_2 \text{ uses } \leq f(n) \cdot \mathcal{O}(f(n)) = \mathcal{O}(f^2(n)) \text{ steps in all.}$$

So $L \in \mathsf{TIME}_{\mathsf{multitape TM}}(f) \Rightarrow L \in \mathsf{TIME}_{1-\mathsf{tape TM}}(\mathcal{O}(f^2))$ Similarly $O(f^k)$ for

- 2-D Tapes
- Random Access TMs ...

Basic thesis of complexity theory

Extended Church-Turing Thesis: Every "reasonable" model of computation can be simulated on a Turing machine with only a polynomial slowdown.

Counterexamples?

- Randomized computation.
- Parallel computation.
- Analog computers.
- DNA computers.
- Quantum computers.

Should qualify thesis with "sequential and deterministic".

Polynomial Time

- Def: Let $P = \bigcup_{p} TIME(p)$, where p is a polynomial = $\bigcup_{k \ge 0} TIME(n^k)$
- \bullet also known as PTIME or ${\cal P}$
- <u>Coarse</u> approximation to "efficient":

Model Independence of P

Although P is defined in terms of TM time, P is a stable class, independent of the computational model.

(Provided the model is reasonable.)

Justification:

- If A and B are different models of computation, $L \in \mathsf{TIME}_A(p_1(n))$, and B can simulate a time t computation of A in time $p_2(t)$, then $L \in \mathsf{TIME}_B(p_2(p_1(n)))$.
- Polynomials are closed under composition, e.g. $f(n)=n^2, g(n)=n^3+1 \Rightarrow f(g(n))=(n^3+1)^2=n^6+2n^3+1.$

How much does representation matter?

- How big is the representation of an *n*-node directed graph?
 - ... as a list of edges?
 - ... as an adjacency matrix?
- How big is the representation of a natural number n?
 - ... in binary?
 - ... in decimal?
 - ... in unary?

Describing & Analyzing Polynomial-Time Algorithms

- Due to Extended Church-Turing Thesis, we can use high-level descriptions.
- Freely use algorithms we've seen as subroutines, if we (or you) have analyzed their running time.
- Bound the total number of high-level steps (including # of loop iterations), and the running time of each step.
- Be careful about the size of data.
- "poly(*n*) executions of poly(*n*)-time algorithms on poly(*n*)-sized inputs takes time poly(*n*)"

For which of the following do we know polynomial-time algorithms?

- Given a DFA M and a string w, decide whether M accepts w.
 - What is the "size" of a DFA?

- Given an NFA N, construct an equivalent DFA M.
 - This is a function, not a language.

More problems about regular languages: are they in P?

• Given an NFA N and a string w, decide whether N accepts w.

• Given a regular expression R, construct an equivalent NFA N.

Problems about context-free languages: are they in P?

• Given a string w, decide whether $w \in L(G)$ for a fixed CFG G?

• What if *G* is part of the input?

Problems about arithmetic: are they in P?

- Given two numbers N, M, compute their product.
 - What is the "size" of the numbers?

• Given a number N, decide if N is prime.

• Given a number N, compute N's prime factorization.

A bogus polynomial-time algorithm

Consider the following algorithm on input an n-bit number z:

• Repeat *n* times: let $z \leftarrow z \times z$ (using grade-school multiplication algorithm)

"Proof" that this algorithm is polynomial time:

- The loop has *n* iterations.
- Each time we multiply, which takes time $O(n^2)$.
- Total time = $n \cdot O(n^2) = O(n^3)$.

Where is the error?

Another way of looking at P

- Multiplicative increases in time or computing power yield multiplicative increases in the size of problems that can be solved
- If L is in P, then there is a constant factor k > 1 such that
 - If you can solve problems of size *s* within a given amount of time
 - and you are given a computer that runs twice as fast, then
 - you can solve problems of size k · s on the new machine in the same amount of time.
- E.g. if *L* is decidable in $O(n^d)$ time, then with twice as much time you can solve problems $2^{1/d}$ as large

Exponential time

- $\mathsf{E} = \cup_{c>0} \mathsf{TIME}(c^n)$
- For problems in E, a multiplicative increase in computing power yields only an *additive* increase in the size of problems that can be solved.
- If L is in E, then there is a constant k such that
 - If you can solve problems of size *s* within a given amount of time
 - and you are given a computer that runs twice as fast, then
 - you can solve problems only of size k + s on the new machine using the same amount of time.