Harvard CS 121 and CSCI E-207 Lecture 10: Ambiguity, Pushdown Automata

Salil Vadhan

October 4, 2012

• **Reading:** Sipser, §2.2.

Another example of a CFG (with proof)

• $L = \{x \in \{a, b\}^* : x \text{ has the same # of } a$'s and b's $\}$.

More examples of CFGs

• Arithmetic Expressions

$$G_1:$$

$$E \to x \mid y \mid E * E \mid E + E \mid (E)$$

 G_2 :

 $E \rightarrow T \mid E + T$ $T \rightarrow T * F \mid F$ $F \rightarrow (E) \mid x \mid y$

Q: Which is "preferable"? Why?

Parse Trees

Derivations in a CFG can be represented by parse trees.

Examples:

Each parse tree corresponds to many derivations, but has unique <u>leftmost derivation</u>.

Parsing

Parsing: Given $x \in L(G)$, produce a parse tree for x. (Used to 'interpret' x. Compilers parse, rather than merely recognize, so they can assign semantics to expressions in the source language.)

Ambiguity: A grammar is <u>ambiguous</u> if some string has two parse trees. **Example:**

Context-free Grammars and Automata

What is the fourth term in the analogy:

Regular Languages : Finite Automata

as

Context-free Languages : ???

October 4, 2012

Regular Grammars

Hint: There is a special kind of CFGs, the **regular grammars**, that generate exactly the regular languages.

A CFG is (right-)regular if any occurrence of a nonterminal on the RHS of a rule is as the rightmost symbol.

Turning a DFA into an equivalent Regular Grammar

• Variables are states.

• Transition
$$\delta(P, \sigma) = R$$
 $(P) \xrightarrow{\sigma} R$

becomes $P \rightarrow \sigma R$

• If P is accepting, add rule $P \rightarrow \varepsilon$

Regular Grammars (cont.)

Example of DFA \Rightarrow **Regular Grammars:**

 $\{x : x \text{ has an even # of } a$'s and an even # of b's $\}$.

Other Direction: Omitted.

Context-free Grammars and Automata

What is the fourth term in the analogy:

Regular Languages : Finite Automata

as

Context-free Languages : ???

Sheila Greibach, AB Radcliffe '60 summa cum laude

Inverses of Phrase Structure Generators

Harvard PhD Thesis, 1963

Pushdown Automata

- = Finite automaton + "pushdown store"
- The pushdown store is a stack of symbols of unlimited size which the machine can read and alter only at the top.

Transitions of PDA are of form $(q, \sigma, \gamma) \mapsto (q', \gamma')$, which means:

If in state q with σ on the input tape and γ on top of the stack, replace γ by γ' on the stack and enter state q' while advancing the reading head over σ .

(Nondeterministic) PDA for "even palindromes"

$$\{ww^{R} : w \in \{a, b\}^{*}\}$$

$$(q, a, \varepsilon) \mapsto (q, a) \quad \text{Push } a\text{'s}$$

$$(q, b, \varepsilon) \mapsto (q, b) \quad \text{and } b\text{'s}$$

$$(q, \varepsilon, \varepsilon) \mapsto (r, \varepsilon) \quad \text{switch to other state}$$

$$(r, a, a) \mapsto (r, \varepsilon) \quad \text{pop } a\text{'s matching input}$$

$$(r, b, b) \mapsto (r, \varepsilon) \quad \text{pop } b\text{'s matching input}$$

So the precondition (q, σ, γ) means that

- the next $|\sigma|$ symbols (0 or 1) of the input are σ and
- the top $|\gamma|$ symbols (0 or 1) on the stack are γ

(Nondeterministic) PDA for "even palindromes"

$$\begin{split} & \{ww^R : w \in \{a, b\}^*\} \\ & (q, a, \varepsilon) \mapsto (q, a) & \text{Push } a\text{'s} \\ & (q, b, \varepsilon) \mapsto (q, b) & \text{and } b\text{'s} \\ & (q, \varepsilon, \varepsilon) \mapsto (r, \varepsilon) & \text{switch to other state} \\ & (r, a, a) \mapsto (r, \varepsilon) & \text{pop } a\text{'s matching input} \\ & (r, b, b) \mapsto (r, \varepsilon) & \text{pop } b\text{'s matching input} \end{split}$$

Need to test whether stack empty: push \$ at beginning and check at end.

$$(q_0, \varepsilon, \varepsilon) \mapsto (q, \$)$$
$$(r, \varepsilon, \$) \mapsto (q_f, \varepsilon)$$

Language recognition with PDAs

A PDA accepts an input string

If there is a computation that starts

- in the start state
- with reading head at the beginning of string
- and the stack is empty

and ends

- in a final state
- with all the input consumed

A PDA computation becomes "blocked" (i.e. "dies") if

• no transition matches *both* the input and stack

Formal Definition of a PDA

• $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$

 $Q = \mathsf{states}$

- $\Sigma = \operatorname{input} \operatorname{alphabet}$
- $\Gamma = \text{stack alphabet}$
- $$\begin{split} \delta &= \text{transition function} \\ Q \times (\Sigma \cup \{\varepsilon\}) \times (\Gamma \cup \{\varepsilon\}) \to P(Q \times (\Gamma \cup \{\varepsilon\})). \end{split}$$
 $q_0 &= \text{start state} \end{split}$

F = final states

Computation by a PDA

• $M \underset{i \in \Sigma \cup \{\varepsilon\}}{\text{accepts}} w$ if we can write $w = w_1 \cdots w_m$, where each $w_i \in \Sigma \cup \{\varepsilon\}$, and there is a sequence of states r_0, \ldots, r_m and stack strings $s_0, \ldots, s_m \in \Gamma^*$ that satisfy

1.
$$r_0 = q_0$$
 and $s_0 = \varepsilon$.

2. For each *i*, $(r_{i+1}, \gamma') \in \delta(r_i, w_{i+1}, \gamma)$ where $s_i = \gamma t$ and $s_{i+1} = \gamma' t$ for some $\gamma, \gamma' \in \Gamma \cup \{\varepsilon\}$ and $t \in \Gamma^*$.

3. $r_m \in F$.

• $L(M) = \{ w \in \Sigma^* : M \text{ accepts } w \}.$

Harvard CS 121 & CSCI E-207

PDA for $\{w \in \{a, b\}^* : \#_a(w) = \#_b(w)\}$