Harvard CS 121 and CSCI E-207 Lecture 10: Ambiguity, Pushdown Automata

Salil Vadhan

October 4, 2012

- Reading: Sipser, §2.2.

Another example of a CFG (with proof)

- $L=\left\{x \in\{a, b\}^{*}: x\right.$ has the same \# of a 's and b 's $\}$.

More examples of CFGs

- Arithmetic Expressions
G_{1} :

$$
E \rightarrow x|y| E * E|E+E|(E)
$$

G_{2} :

$$
\begin{aligned}
& E \rightarrow T \mid E+T \\
& T \rightarrow T * F \mid F \\
& F \rightarrow(E)|x| y
\end{aligned}
$$

Q: Which is "preferable"? Why?

Parse Trees

Derivations in a CFG can be represented by parse trees.
Examples:

Each parse tree corresponds to many derivations, but has unique leftmost derivation.

Parsing

Parsing: Given $x \in L(G)$, produce a parse tree for x. (Used to 'interpret' x. Compilers parse, rather than merely recognize, so they can assign semantics to expressions in the source language.)

Ambiguity: A grammar is ambiguous if some string has two parse trees.

Example:

Context-free Grammars and Automata

What is the fourth term in the analogy:

Regular Languages : Finite Automata
as
Context-free Languages : ???

Regular Grammars

Hint: There is a special kind of CFGs, the regular grammars, that generate exactly the regular languages.
A CFG is (right-)regular if any occurrence of a nonterminal on the RHS of a rule is as the rightmost symbol.

Turning a DFA into an equivalent Regular Grammar

- Variables are states.
- Transition $\delta(P, \sigma)=R \quad(P-T$
becomes $P \rightarrow \sigma R$
- If P is accepting, add rule $P \rightarrow \varepsilon$

Regular Grammars (cont.)

Example of DFA \Rightarrow Regular Grammars:
$\{x: x$ has an even \# of a 's and an even \# of b 's $\}$.

Other Direction: Omitted.

Context-free Grammars and Automata

What is the fourth term in the analogy:

Regular Languages : Finite Automata
as
Context-free Languages : ???

Sheila Greibach, AB Radcliffe '60 summa cum laude

Inverses of Phrase Structure Generators

Harvard PhD Thesis, 1963

Pushdown Automata

= Finite automaton + "pushdown store"

- The pushdown store is a stack of symbols of unlimited size which the machine can read and alter only at the top.

Input	a	b	b	a	b	a

Transitions of PDA are of form $(q, \sigma, \gamma) \mapsto\left(q^{\prime}, \gamma^{\prime}\right)$, which means:
If in state q with σ on the input tape and γ on top of the stack, replace γ by γ^{\prime} on the stack and enter state q^{\prime} while advancing the reading head over σ.
(Nondeterministic) PDA for "even palindromes"

$$
\begin{aligned}
& \left\{w w^{R}: w \in\{a, b\}^{*}\right\} \\
& (q, a, \varepsilon) \mapsto(q, a) \quad \text { Push } a \text { 's } \\
& (q, b, \varepsilon) \mapsto(q, b) \quad \text { and } b \text { 's } \\
& (q, \varepsilon, \varepsilon) \mapsto(r, \varepsilon) \quad \text { switch to other state } \\
& (r, a, a) \mapsto(r, \varepsilon) \quad \text { pop } a \text { 's matching input } \\
& (r, b, b) \mapsto(r, \varepsilon) \quad \text { pop } b \text { 's matching input }
\end{aligned}
$$

So the precondition (q, σ, γ) means that

- the next $|\sigma|$ symbols (0 or 1) of the input are σ and
- the top $|\gamma|$ symbols (0 or 1) on the stack are γ

(Nondeterministic) PDA for "even palindromes"

$$
\begin{aligned}
& \left\{w w^{R}: w \in\{a, b\}^{*}\right\} \\
& (q, a, \varepsilon) \mapsto(q, a) \quad \text { Push } a \text { 's } \\
& (q, b, \varepsilon) \mapsto(q, b) \quad \text { and } b \text { 's } \\
& (q, \varepsilon, \varepsilon) \mapsto(r, \varepsilon) \quad \text { switch to other state } \\
& (r, a, a) \mapsto(r, \varepsilon) \quad \text { pop } a \text { 's matching input } \\
& (r, b, b) \mapsto(r, \varepsilon) \quad \text { pop } b \text { 's matching input }
\end{aligned}
$$

Need to test whether stack empty: push $\$$ at beginning and check at end.

$$
\begin{aligned}
& \left(q_{0}, \varepsilon, \varepsilon\right) \mapsto(q, \$) \\
& (r, \varepsilon, \$) \mapsto\left(q_{f}, \varepsilon\right)
\end{aligned}
$$

Language recognition with PDAs

A PDA accepts an input string
If there is a computation that starts

- in the start state
- with reading head at the beginning of string
- and the stack is empty and ends
- in a final state
- with all the input consumed

A PDA computation becomes "blocked" (i.e. "dies") if

- no transition matches both the input and stack

Formal Definition of a PDA

- $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$
$Q=$ states
$\Sigma=$ input alphabet
$\Gamma=$ stack alphabet
$\delta=$ transition function

$$
Q \times(\Sigma \cup\{\varepsilon\}) \times(\Gamma \cup\{\varepsilon\}) \rightarrow P(Q \times(\Gamma \cup\{\varepsilon\})) .
$$

$q_{0}=$ start state
$F=$ final states

Computation by a PDA

- M accepts w if we can write $w=w_{1} \cdots w_{m}$, where each $w_{i} \in \Sigma \cup\{\varepsilon\}$, and there is a sequence of states r_{0}, \ldots, r_{m} and stack strings $s_{0}, \ldots, s_{m} \in \Gamma^{*}$ that satisfy

1. $r_{0}=q_{0}$ and $s_{0}=\varepsilon$.
2. For each $i,\left(r_{i+1}, \gamma^{\prime}\right) \in \delta\left(r_{i}, w_{i+1}, \gamma\right)$ where $s_{i}=\gamma t$ and $s_{i+1}=\gamma^{\prime} t$ for some $\gamma, \gamma^{\prime} \in \Gamma \cup\{\varepsilon\}$ and $t \in \Gamma^{*}$.
3. $r_{m} \in F$.

- $L(M)=\left\{w \in \Sigma^{*}: M\right.$ accepts $\left.w\right\}$.

PDA for $\left\{w \in\{a, b\}^{*}: \#_{a}(w)=\#_{b}(w)\right\}$

