Harvard CS 121 and CSCI E-207 Lecture 11: Pushdown Automata and Context-Free Languages

Salil Vadhan
October 9, 2012

- Reading: Sipser, §2.2.

Pushdown Automata

= Finite automaton + "pushdown store"

- The pushdown store is a stack of symbols of unlimited size which the machine can read and alter only at the top.

Input	a	b	b	a	b	a

Transitions of PDA are of form $(q, \sigma, \gamma) \mapsto\left(q^{\prime}, \gamma^{\prime}\right)$, which means:
If in state q with σ on the input tape and γ on top of the stack, replace γ by γ^{\prime} on the stack and enter state q^{\prime} while advancing the reading head over σ.

(Nondeterministic) PDA for "even palindromes"

$$
\begin{aligned}
& \left\{w w^{R}: w \in\{a, b\}^{*}\right\} \\
& (q, a, \varepsilon) \mapsto(q, a) \quad \text { Push } a \text { 's } \\
& (q, b, \varepsilon) \mapsto(q, b) \quad \text { and } b \text { 's } \\
& (q, \varepsilon, \varepsilon) \mapsto(r, \varepsilon) \quad \text { switch to other state } \\
& (r, a, a) \mapsto(r, \varepsilon) \quad \text { pop } a \text { 's matching input } \\
& (r, b, b) \mapsto(r, \varepsilon) \quad \text { pop } b \text { 's matching input }
\end{aligned}
$$

So the precondition (q, σ, γ) means that

- the next $|\sigma|$ symbols (0 or 1) of the input are σ and
- the top $|\gamma|$ symbols (0 or 1) on the stack are γ

(Nondeterministic) PDA for "even palindromes"

$$
\begin{aligned}
& \left\{w w^{R}: w \in\{a, b\}^{*}\right\} \\
& (q, a, \varepsilon) \mapsto(q, a) \quad \text { Push } a \text { 's } \\
& (q, b, \varepsilon) \mapsto(q, b) \quad \text { and } b \text { 's } \\
& (q, \varepsilon, \varepsilon) \mapsto(r, \varepsilon) \quad \text { switch to other state } \\
& (r, a, a) \mapsto(r, \varepsilon) \quad \text { pop } a \text { 's matching input } \\
& (r, b, b) \mapsto(r, \varepsilon) \quad \text { pop } b \text { 's matching input }
\end{aligned}
$$

Need to test whether stack empty: push $\$$ at beginning and check at end.

$$
\begin{aligned}
& \left(q_{0}, \varepsilon, \varepsilon\right) \mapsto(q, \$) \\
& (r, \varepsilon, \$) \mapsto\left(q_{f}, \varepsilon\right)
\end{aligned}
$$

Language recognition with PDAs

A PDA accepts an input string
If there is a computation that starts

- in the start state
- with reading head at the beginning of string
- and the stack is empty and ends
- in a final state
- with all the input consumed

A PDA computation becomes "blocked" (i.e. "dies") if

- no transition matches both the input and stack

Formal Definition of a PDA

- $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$
$Q=$ states
$\Sigma=$ input alphabet
$\Gamma=$ stack alphabet
$\delta=$ transition function

$$
Q \times(\Sigma \cup\{\varepsilon\}) \times(\Gamma \cup\{\varepsilon\}) \rightarrow P(Q \times(\Gamma \cup\{\varepsilon\})) .
$$

$q_{0}=$ start state
$F=$ final states

Computation by a PDA

- M accepts w if we can write $w=w_{1} \cdots w_{m}$, where each $w_{i} \in \Sigma \cup\{\varepsilon\}$, and there is a sequence of states r_{0}, \ldots, r_{m} and stack strings $s_{0}, \ldots, s_{m} \in \Gamma^{*}$ that satisfy

1. $r_{0}=q_{0}$ and $s_{0}=\varepsilon$.
2. For each $i,\left(r_{i+1}, \gamma^{\prime}\right) \in \delta\left(r_{i}, w_{i+1}, \gamma\right)$ where $s_{i}=\gamma t$ and $s_{i+1}=\gamma^{\prime} t$ for some $\gamma, \gamma^{\prime} \in \Gamma \cup\{\varepsilon\}$ and $t \in \Gamma^{*}$.
3. $r_{m} \in F$.

- $L(M)=\left\{w \in \Sigma^{*}: M\right.$ accepts $\left.w\right\}$.

PDA for $\left\{w \in\{a, b\}^{*}: \#_{a}(w)=\#_{b}(w)\right\}$

Equivalence of CFGs and PDAs

Thm: The class of languages recognized by PDAs is the CFLs.
I: For every CFG G, there is a PDA M
with $L(M)=L(G)$.

II: For every PDA M, there is a CFG G with $L(G)=L(M)$.

Proof that every CFL is accepted by some PDA

Let $G=(V, \Sigma, R, S)$

We'll allow a generalized sort of PDA that can push strings onto stack.
E.g., $(q, a, b) \mapsto(r, c d)$

Proof that every CFL is accepted by some PDA

Let $G=(V, \Sigma, R, S)$
We'll allow a generalized sort of PDA that can push strings onto stack.
E.g., $(q, a, b) \mapsto(r, c d)$

Then corresponding PDA has just 3 states:
$q_{\text {start }} \sim$ start state
$q_{\text {loop }} \sim$ "main loop" state
$q_{\text {accept }} \sim$ final state
Stack alphabet $=V \cup \Sigma \cup\{\$\}$

CFL \Rightarrow PDA, Continued: The Transitions of the PDA

Transitions:

- $\delta\left(q_{\text {start }}, \varepsilon, \varepsilon\right)=\left\{\left(q_{\text {loop }}, S \$\right)\right\}$
"Start by putting $S \$$ on the stack, and go to $q_{\text {loop }}$ "
- $\delta\left(q_{\text {loop }}, \varepsilon, A\right)=\left\{\left(q_{\text {loop }}, w\right)\right\}$ for each rule $A \rightarrow w$
"Remove a variable from the top of the stack and replace it with a corresponding righthand side"
- $\delta\left(q_{\text {loop }}, \sigma, \sigma\right)=\left\{\left(q_{\text {loop }}, \varepsilon\right)\right\}$ for each $\sigma \in \Sigma$
"Pop a terminal symbol from the stack if it matches the next input symbol"
- $\delta\left(q_{\text {loop }}, \varepsilon, \$\right)=\left\{\left(q_{\text {accept }}, \varepsilon\right)\right\}$.
"Go to accept state if stack contains only $\$$."

Example

- Consider grammar G with rules $\{S \rightarrow a S b, S \rightarrow \varepsilon\}$

$$
\left(\text { so } L(G)=\left\{a^{n} b^{n}: n \geq 0\right\}\right)
$$

- Construct PDA
$M=\left(\left\{q_{\text {start }}, q_{\text {loop }}, q_{\text {accept }}\right\},\{a, b\},\{a, b, S, \$\}, \delta, q_{\text {start }},\left\{q_{\text {accept }}\right\}\right)$
Transition Function δ :
- Derivation $S \Rightarrow a S b \Rightarrow a a S b b \Rightarrow a a b b$

Corresponding Computation: $L(M)=L(G)$

- First modify PDA M so that
- Single accept state.
- All accepting computations end with empty stack.
- In every step, push a symbol or pop a symbol but not both.

Design of the grammar G equivalent to PDA M

- Variables: $A_{p q}$ for every two states p, q of M.
- Goal: $A_{p q}$ generates all strings that can take M from p to q, beginning \& ending w/empty stack.
- Rules:
- For all states $p, q, r, A_{p q} \rightarrow A_{p r} A_{r q}$.
- For states p, q, r, s and $\sigma, \tau \in \Sigma, A_{p q} \rightarrow \sigma A_{r s} \tau$ if there is a stack symbol γ such that $\delta(p, \sigma, \varepsilon)$ contains (r, γ) and $\delta(s, \tau, \gamma)$ contains (q, ε).
- For every state $p, A_{p p} \rightarrow \varepsilon$.
- Start variable: $A_{q_{\text {start }} q_{\text {accept }}}$.

Sketch of Proof that the Grammar is Equivalent to the PDA

- Claim: $A_{p q} \Rightarrow^{*} w$ if and only if w can take M from p to q, beginning \& ending w/empty stack.
\Rightarrow Proof by induction on length of derivation.
\Leftarrow Proof by induction on length of computation.
- Computation of length 0 (base case): Use $A_{p p} \rightarrow \varepsilon$.
- Stack empties sometime in middle of computation: Use $A_{p q} \rightarrow A_{p r} A_{r q}$.
- Stack does not empty in middle of computation: Use $A_{p q} \rightarrow \sigma A_{r s} \tau$.

Closure Properties of CFLs

- Thm: The CFLs are the languages accepted by PDAs
- Thm: The CFLs are closed under
- Union
- Concatenation
- Kleene *
- Intersection with a regular set

The intersection of a CFL and a regular set is a CFL

Pf sketch: Let L_{1} be CF and L_{2} be regular
$L_{1}=L\left(M_{1}\right), M_{1}$ a PDA
$L_{2}=L\left(M_{2}\right), M_{2}$ a DFA
$Q_{1}=$ state set of M_{1}
$Q_{2}=$ state set of M_{2}
Construct a PDA with state set $Q_{1} \times Q_{2}$ which keeps track of computation of both M_{1} and M_{2} on input.

Q: Why doesn't this argument work if M_{1} and M_{2} are both PDAs?

In fact, the intersection of two CFLs is not necessarily CF.
And the complement of a CFL is not necessarily CF
Q: How to prove that languages are not context free?

Pumping Lemma for CFLs (aka Yuvecksy’s Theorem ;)

Lemma: If L is context-free, then there is a number p (the pumping length) such that any $s \in L$ of length at least p can be divided into $s=u v x y z$, where

1. $u v^{i} x y^{i} z \in L$ for every $i \geq 0$,
2. $v \neq \varepsilon$ or $y \neq \varepsilon$, and
3. $|v x y| \leq p$.

Using the Pumping Lemma to Prove Non-Context-Freeness

$\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}$ is not CF.
aaaaaaaaaaaaaaaaaa bbbbbbbbbbbbbbbbbbb cccccccccccccccccccccc

What are v, y ?

- Contain 2 kinds of symbols
- Contain only one kind of symbol
\Rightarrow Corollary: CFLs not closed under intersection (why?)
\Rightarrow Corollary: CFLs not closed under complement (why?)

