
Harvard CS 121 and CSCI E-207
Lecture 11: Pushdown Automata and

Context-Free Languages

Salil Vadhan

October 9, 2012

• Reading: Sipser, §2.2.

Harvard CS 121 & CSCI E-207 October 9, 2012

Pushdown Automata

= Finite automaton + “pushdown store”
• The pushdown store is a stack of symbols of unlimited size

which the machine can read and alter only at the top.

Pushdown Automata 2

Pushdown Automata

= Finite automaton + “pushdown store”

• The pushdown store is a stack of symbols of unlimited size which the machine can read and alter
only at the top.

a b b a b a

F.C.
a

d
c

b

b
pushdown store head
can push (add symbols)
or pop (remove and
check symbols)

reading head
(L to R only,
one symbol at a
time, or stays put)

Input

Stack

Transitions of PDA are of form (q,σ, γ) !→ (q′, γ′)

If in state q with σ on the input tape and γ on top of the stack, replace γ by γ′ on the stack and
enter state q′ while advancing the reading head over σ.

e.g. (Nondeterministic) PDA for “even palindromes”:

{wwR : w ∈ {a, b}∗}

(q, a, ε) !→ (q, a) Push a’s

(q, b, ε) !→ (q, b) and b’s

(q, ε, ε) !→ (r, ε) switch to other state

(r, a, a) !→ (r, ε) pop a’s matching input

(r, b, b) !→ (r, ε) pop b’s matching input

Need to test whether stack empty: push $ at beginning and check at end.

A PDA accepts an input string

If there is a computation that

• starts in the start state

• with reading head at the beginning of string

• and the stack is empty

Transitions of PDA are of form (q, σ, γ) 7→ (q′, γ′), which means:

If in state q with σ on the input tape and γ on top of the stack,
replace γ by γ′ on the stack and enter state q′ while advancing
the reading head over σ.

1

Harvard CS 121 & CSCI E-207 October 9, 2012

(Nondeterministic) PDA for “even palindromes”

{wwR : w ∈ {a, b}∗}

(q, a, ε) 7→ (q, a) Push a’s
(q, b, ε) 7→ (q, b) and b’s
(q, ε, ε) 7→ (r, ε) switch to other state
(r, a, a) 7→ (r, ε) pop a’s matching input
(r, b, b) 7→ (r, ε) pop b’s matching input

So the precondition (q, σ, γ) means that

• the next |σ| symbols (0 or 1) of the input are σ and

• the top |γ| symbols (0 or 1) on the stack are γ

2

Harvard CS 121 & CSCI E-207 October 9, 2012

(Nondeterministic) PDA for “even palindromes”

{wwR : w ∈ {a, b}∗}

(q, a, ε) 7→ (q, a) Push a’s
(q, b, ε) 7→ (q, b) and b’s
(q, ε, ε) 7→ (r, ε) switch to other state
(r, a, a) 7→ (r, ε) pop a’s matching input
(r, b, b) 7→ (r, ε) pop b’s matching input

Need to test whether stack empty: push $ at beginning and
check at end.

(q0, ε, ε) 7→ (q, $)

(r, ε, $) 7→ (qf , ε)

3

Harvard CS 121 & CSCI E-207 October 9, 2012

Language recognition with PDAs

A PDA accepts an input string

If there is a computation that starts

• in the start state

• with reading head at the beginning of string

• and the stack is empty

and ends

• in a final state

• with all the input consumed

A PDA computation becomes “blocked” (i.e. “dies”) if

• no transition matches both the input and stack
4

Harvard CS 121 & CSCI E-207 October 9, 2012

Formal Definition of a PDA

• M = (Q,Σ,Γ, δ, q0, F)

Q = states

Σ = input alphabet

Γ = stack alphabet

δ = transition function
Q× (Σ ∪ {ε})× (Γ ∪ {ε})→ P (Q× (Γ ∪ {ε})).

q0 = start state

F = final states

5

Harvard CS 121 & CSCI E-207 October 9, 2012

Computation by a PDA

• M accepts w if we can write w = w1 · · ·wm, where each
wi ∈ Σ ∪ {ε}, and there is a sequence of states r0, . . . , rm and
stack strings s0, . . . , sm ∈ Γ∗ that satisfy

1. r0 = q0 and s0 = ε.

2. For each i, (ri+1, γ
′) ∈ δ(ri, wi+1, γ) where si = γt and

si+1 = γ′t for some γ, γ′ ∈ Γ ∪ {ε} and t ∈ Γ∗.

3. rm ∈ F .

• L(M) = {w ∈ Σ∗ : M accepts w}.

6

Harvard CS 121 & CSCI E-207 October 9, 2012

PDA for {w ∈ {a, b}∗ : #a(w) = #b(w)}

7

Harvard CS 121 & CSCI E-207 October 9, 2012

Equivalence of CFGs and PDAs

Thm: The class of languages recognized by PDAs is the CFLs.

I: For every CFG G,
there is a PDA M

with L(M) = L(G).

II: For every PDA M ,
there is a CFG G

with L(G) = L(M).

8

Harvard CS 121 & CSCI E-207 October 9, 2012

Proof that every CFL is accepted by some PDA

Let G = (V,Σ, R, S)

We’ll allow a generalized sort of PDA that can push strings
onto stack.

E.g., (q, a, b) 7→ (r, cd)

9

Harvard CS 121 & CSCI E-207 October 9, 2012

Proof that every CFL is accepted by some PDA

Let G = (V,Σ, R, S)

We’ll allow a generalized sort of PDA that can push strings
onto stack.

E.g., (q, a, b) 7→ (r, cd)

Then corresponding PDA has just 3 states:

qstart ∼ start state

qloop ∼ “main loop” state

qaccept ∼ final state

Stack alphabet = V ∪ Σ ∪ {$}

10

Harvard CS 121 & CSCI E-207 October 9, 2012

CFL⇒ PDA, Continued: The Transitions of the PDA

Transitions:

• δ(qstart, ε, ε) = {(qloop, S$)}

“Start by putting S$ on the stack, and go to qloop”

• δ(qloop, ε, A) = {(qloop, w)} for each rule A→ w

“Remove a variable from the top of the stack and replace it
with a corresponding righthand side”

• δ(qloop, σ, σ) = {(qloop, ε)} for each σ ∈ Σ

“Pop a terminal symbol from the stack if it matches the next
input symbol”

• δ(qloop, ε, $) = {(qaccept, ε)}.

“Go to accept state if stack contains only $.”
11

Harvard CS 121 & CSCI E-207 October 9, 2012

Example

• Consider grammar G with rules {S → aSb, S → ε}

(so L(G) = {anbn : n ≥ 0})

• Construct PDA
M = ({qstart, qloop, qaccept}, {a, b}, {a, b, S, $}, δ, qstart, {qaccept})

Transition Function δ :

• Derivation S ⇒ aSb⇒ aaSbb⇒ aabb

Corresponding Computation:

12

Harvard CS 121 & CSCI E-207 October 9, 2012

Proof That For Every PDA M there is a CFG G Such That
L(M) = L(G)

• First modify PDA M so that

• Single accept state.

• All accepting computations end with empty stack.

• In every step, push a symbol or pop a symbol but not both.

13

Harvard CS 121 & CSCI E-207 October 9, 2012

Design of the grammar G equivalent to PDA M

• Variables: Apq for every two states p, q of M .

• Goal: Apq generates all strings that can take M from p to q,
beginning & ending w/empty stack.

• Rules:

• For all states p, q, r, Apq → AprArq.

• For states p, q, r, s and σ, τ ∈ Σ, Apq → σArsτ if there is a
stack symbol γ such that δ(p, σ, ε) contains (r, γ) and
δ(s, τ, γ) contains (q, ε).

• For every state p, App→ ε.

• Start variable: Aqstartqaccept.

14

Harvard CS 121 & CSCI E-207 October 9, 2012

Sketch of Proof that the Grammar is Equivalent to the PDA

• Claim: Apq ⇒∗ w if and only if w can take M from p to q,
beginning & ending w/empty stack.

⇒ Proof by induction on length of derivation.

⇐ Proof by induction on length of computation.

• Computation of length 0 (base case): Use App→ ε.

• Stack empties sometime in middle of computation: Use
Apq → AprArq.

• Stack does not empty in middle of computation: Use
Apq → σArsτ .

15

Harvard CS 121 & CSCI E-207 October 9, 2012

Closure Properties of CFLs

• Thm: The CFLs are the languages accepted by PDAs

• Thm: The CFLs are closed under

• Union

• Concatenation

• Kleene ∗

• Intersection with a regular set

16

Harvard CS 121 & CSCI E-207 October 9, 2012

The intersection of a CFL and a regular set is a CFL

Pf sketch: Let L1 be CF and L2 be regular

L1 = L(M1), M1 a PDA

L2 = L(M2), M2 a DFA

Q1 = state set of M1

Q2 = state set of M2

Construct a PDA with state set Q1 ×Q2 which keeps track of
computation of both M1 and M2 on input.

17

Harvard CS 121 & CSCI E-207 October 9, 2012

Q: Why doesn’t this argument work if M1 and M2 are both
PDAs?

In fact, the intersection of two CFLs is not necessarily CF.

And the complement of a CFL is not necessarily CF

Q: How to prove that languages are not context free?

18

Harvard CS 121 & CSCI E-207 October 9, 2012

Pumping Lemma for CFLs (aka Yuvecksy’s Theorem ;)

Lemma: If L is context-free, then there is a number p (the
pumping length) such that any s ∈ L of length at least p can be
divided into s = uvxyz, where

1. uvixyiz ∈ L for every i ≥ 0,

2. v 6= ε or y 6= ε, and

3. |vxy| ≤ p.

19

Harvard CS 121 & CSCI E-207 October 9, 2012

Using the Pumping Lemma to Prove Non-Context-Freeness

{anbncn : n ≥ 0} is not CF.

aaaaaaaaaaaaaaaaaa bbbbbbbbbbbbbbbbbbb cccccccccccccccccccccc

What are v, y?

• Contain 2 kinds of symbols

• Contain only one kind of symbol

⇒ Corollary: CFLs not closed under intersection (why?)

⇒ Corollary: CFLs not closed under complement (why?)

20

