Harvard CS 121 and CSCI E-207
Lecture 11: Pushdown Automata and
Context-Free Languages

Salil Vadhan

October 9, 2012

e Reading: Sipser, §2.2.

Harvard CS 121 & CSCI E-207 October 9, 2012

Pushdown Automata

= Finite automaton + “pushdown store”

e The pushdown store is a stack of symbols of unlimited size
which the machine can read and alter only at the top.

lnput ' a | b|b|a|b|a

reading head ..,
(L to R only, /
one symbol at a FC. -

time, or stays put)

Stack

ST O S

pushdown store head
can push (add symbols)
or pop (remove and

check symbols)

Transitions of PDA are of form (¢, o,v) — (¢',~'), which means:

If in state ¢ with o on the input tape and ~ on top of the stack,
replace v by v’ on the stack and enter state ¢’ while advancing
the reading head over o.

1

Harvard CS 121 & CSCI E-207 October 9, 2012

J3

(Nondeterministic) PDA for “even palindromes

(¢,a,¢) — (¢,a) Pusha’s

(g,b,€) — (g,b) andb’s

(q,e,¢) — (r,e) switch to other state
(r,a,a) — (r,e) pop a’s matching input
(r,b,b) — (r,¢) pop b’'s matching input

So the precondition (¢, o,y) means that

 the next |o| symbols (0 or 1) of the input are o and

e the top || symbols (0 or 1) on the stack are ~

Harvard CS 121 & CSCI E-207 October 9, 2012

(Nondeterministic) PDA for “even palindromes”™

(¢,a,¢) — (¢,a) Pusha’s

(g,b,€) — (g,b) andb’s

(q,e,¢) — (r,e) switch to other state
(r,a,a) — (r,e) pop a’s matching input
(r,b,b) — (r,¢) pop b’'s matching input

Need to test whether stack empty: push $ at beginning and
check at end.

(QOagag) — (Q7 $)
(r,e,%) — (qr,¢)

Harvard CS 121 & CSCI E-207 October 9, 2012

Language recognition with PDAs

A PDA accepts an input string

If there is a computation that starts
e in the start state
e with reading head at the beginning of string

e and the stack is empty

and ends
e In a final state

e with all the input consumed

A PDA computation becomes “blocked” (i.e. “dies”) if

e NO transition matches both the input and stack

Harvard CS 121 & CSCI E-207 October 9, 2012

Formal Definition of a PDA

e M =(Q,%,T',6,qo, F)
() = states
) = input alphabet
I' = stack alphabet

d = transition function
Q x (XU{e}) x (I'U{e}) = P(Q x (I"'U{e})).
go = start state

F = final states

Harvard CS 121 & CSCI E-207 October 9, 2012

Computation by a PDA

e) accepts w if we can write w = w; - - - w,,,, Where each
w; € XU {e}, and there is a sequence of states rg, ..., ., and
stack strings sq, ..., s, € I'* that satisfy

1. TQZQQand80:€.

2. Foreach i, (r;11,7") € 6(r;, wix1,7) Where s; = ~t and
s;i1 =~'tforsome v,~ e T'U{e} andt € I'*.

3. 7, € F.

o (M) ={weX*: M accepts w}.

Harvard CS 121 & CSCI E-207 October 9, 2012

PDA for {w € {a,b}* : #,(w) = #p(w)}

Harvard CS 121 & CSCI E-207 October 9, 2012

Equivalence of CFGs and PDAs

Thm: The class of languages recognized by PDAs is the CFLs.

I: For every CFG G,
there is a PDA M
with L(M) = L(G).

ll: For every PDA M,
thereisa CFG GG
with L(G) = L(M).

Harvard CS 121 & CSCI E-207 October 9, 2012

Proof that every CFL is accepted by some PDA

Let G = (V, %, R, S)

We'll allow a generalized sort of PDA that can push strings
onto stack.

E.g., (q,a,b) > (r, cd)

Harvard CS 121 & CSCI E-207 October 9, 2012

Proof that every CFL is accepted by some PDA
LetG = (V,X,R,S)

We'll allow a generalized sort of PDA that can push strings
onto stack.

E.g., (q,a,b) — (r, cd)

Then corresponding PDA has just 3 states:
gstart ~ Start state
Qloop ~ 'Main loop” state

Jaccept ~ final state

Stack alphabet = V U X U {$}

10

Harvard CS 121 & CSCI E-207 October 9, 2012

CFL = PDA, Continued: The Transitions of the PDA
Transitions:
® 0(gstart; €,€) = {(qioop, 55) }
“Start by putting S$ on the stack, and go to gioop”
® 0(qioop, €, A) = {(qioop, w)} for each rule A — w

“Remove a variable from the top of the stack and replace it
with a corresponding righthand side”

® J(Qioop; 7,0) = {(qioop,€)} foreach o € ¥

“Pop a terminal symbol from the stack if it matches the next
input symbol”
® 5(q100p7 E, $) — {(Qaccepty 5)}

“Go to accept state if stack contains only $.”

11

Harvard CS 121 & CSCI E-207 October 9, 2012

Example

e Consider grammar G with rules {S — a5b, S — ¢}
(so L(G) = {a™b™ : n > 0})

e Construct PDA
M — ({QStarta QIoop7 Qaccept}a {CL, b}7 {CL, b7 S’ $}’ 5’ start; {Qaccept})

Transition Function § :

e Derivation S = aSb = aaSbb = aabb

Corresponding Computation:

12

Harvard CS 121 & CSCI E-207 October 9, 2012

Proof That For Every PDA) there is a CFG G Such That
L(M) = L(G)

e First modify PDA M so that
e Single accept state.
e All accepting computations end with empty stack.

e |n every step, push a symbol or pop a symbol but not both.

13

Harvard CS 121 & CSCI E-207 October 9, 2012

Design of the grammar G equivalent to PDA M

e Variables: A,, for every two states p, g of M.

e Goal: A,, generates all strings that can take M from p to g,
beginning & ending w/empty stack.

e Rules:
e For all states p,q,r, A,y — AprArg.

e For states p,q,r,sand o,7 € X, A,, = cdA,s7 if there is a
stack symbol v such that §(p, o,) contains (r,y) and
d(s,T,7y) contains (g, €).

e For every state p, A, — ¢.

e Start variable: A

dstartdaccept”

14

Harvard CS 121 & CSCI E-207 October 9, 2012

Sketch of Proof that the Grammar is Equivalent to the PDA

e Claim: A,, = w if and only if w can take M from p to g,
beginning & ending w/empty stack.

=- Proof by induction on length of derivation.
< Proof by induction on length of computation.
e Computation of length O (base case): Use A4,, — <.

e Stack empties sometime in middle of computation: Use
Ayy = AprAsg.

e Stack does not empty in middle of computation: Use
Apg — 0A T,

15

Harvard CS 121 & CSCI E-207 October 9, 2012

Closure Properties of CFLs

e Thm: The CFLs are the languages accepted by PDAs

e Thm: The CFLs are closed under
e Union
e Concatenation
e Kleene x

e Intersection with a regular set

16

Harvard CS 121 & CSCI E-207 October 9, 2012

The intersection of a CFL and a regular set is a CFL

Pf sketch: Let L, be CF and L, be regular

L= L(Ml), M, a PDA
Lo = L(MQ), M- a DFA

()1 = state set of M,
(), = state set of M,

Construct a PDA with state set ()1 x Q5 which keeps track of
computation of both AM; and M5 on input.

17

Harvard CS 121 & CSCI E-207 October 9, 2012
Q: Why doesn’t this argument work if M/; and)M, are both
PDAs?

In fact, the intersection of two CFLs is not necessarily CF.
And the complement of a CFL is not necessarily CF

Q: How to prove that languages are not context free?

18

Harvard CS 121 & CSCI E-207 October 9, 2012

Pumping Lemma for CFLs (aka Yuvecksy’s Theorem ;)

Lemma: If L is context-free, then there is a number p (the
pumping length) such that any s € L of length at least p can be
divided into s = uvxryz, where

1. w'zy'z € L for every i > 0,
2. v#¢e0ry#e,and
3. [vzy| <p.

19

Harvard CS 121 & CSCI E-207

Using the Pumping Lemma to Prove Non-Context-Freeness

{a™b™c" : n > 0} is not CF.

aadaaadaaaaaaadaadad

bbbbbbbbbbbbbbbbbbb

ccceceeecececececcececececececececececece

What are v, y?

e Contain 2 kinds of symbols

e Contain only one kind of symbol

=- Corollary: CFLs not closed under intersection (why?)

= Corollary: CFLs not closed under complement (why?)

October 9, 2012

20

