Harvard CS 121 and CSCI E-207 Lecture 11: Pushdown Automata and Context-Free Languages

Salil Vadhan

October 9, 2012

• **Reading:** Sipser, §2.2.

Pushdown Automata

- = Finite automaton + "pushdown store"
- The pushdown store is a stack of symbols of unlimited size which the machine can read and alter only at the top.

Transitions of PDA are of form $(q, \sigma, \gamma) \mapsto (q', \gamma')$, which means:

If in state q with σ on the input tape and γ on top of the stack, replace γ by γ' on the stack and enter state q' while advancing the reading head over σ .

(Nondeterministic) PDA for "even palindromes"

$$\{ww^{R} : w \in \{a, b\}^{*}\}$$

$$(q, a, \varepsilon) \mapsto (q, a) \quad \text{Push } a\text{'s}$$

$$(q, b, \varepsilon) \mapsto (q, b) \quad \text{and } b\text{'s}$$

$$(q, \varepsilon, \varepsilon) \mapsto (r, \varepsilon) \quad \text{switch to other state}$$

$$(r, a, a) \mapsto (r, \varepsilon) \quad \text{pop } a\text{'s matching input}$$

$$(r, b, b) \mapsto (r, \varepsilon) \quad \text{pop } b\text{'s matching input}$$

So the precondition (q, σ, γ) means that

- the next $|\sigma|$ symbols (0 or 1) of the input are σ and
- the top $|\gamma|$ symbols (0 or 1) on the stack are γ

(Nondeterministic) PDA for "even palindromes"

$$\begin{split} & \{ww^R : w \in \{a, b\}^*\} \\ & (q, a, \varepsilon) \mapsto (q, a) & \text{Push } a\text{'s} \\ & (q, b, \varepsilon) \mapsto (q, b) & \text{and } b\text{'s} \\ & (q, \varepsilon, \varepsilon) \mapsto (r, \varepsilon) & \text{switch to other state} \\ & (r, a, a) \mapsto (r, \varepsilon) & \text{pop } a\text{'s matching input} \\ & (r, b, b) \mapsto (r, \varepsilon) & \text{pop } b\text{'s matching input} \end{split}$$

Need to test whether stack empty: push \$ at beginning and check at end.

$$(q_0, \varepsilon, \varepsilon) \mapsto (q, \$)$$
$$(r, \varepsilon, \$) \mapsto (q_f, \varepsilon)$$

Language recognition with PDAs

A PDA accepts an input string

If there is a computation that starts

- in the start state
- with reading head at the beginning of string
- and the stack is empty

and ends

- in a final state
- with all the input consumed

A PDA computation becomes "blocked" (i.e. "dies") if

• no transition matches *both* the input and stack

Formal Definition of a PDA

• $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$

Q = states

- $\Sigma = \operatorname{input} \operatorname{alphabet}$
- $\Gamma = \text{stack alphabet}$
- $$\begin{split} \delta &= \text{transition function} \\ Q \times (\Sigma \cup \{\varepsilon\}) \times (\Gamma \cup \{\varepsilon\}) \to P(Q \times (\Gamma \cup \{\varepsilon\})). \end{split}$$
 $q_0 &= \text{start state} \end{split}$

F = final states

Computation by a PDA

• $M \underset{i \in \Sigma \cup \{\varepsilon\}}{\text{accepts}} w$ if we can write $w = w_1 \cdots w_m$, where each $w_i \in \Sigma \cup \{\varepsilon\}$, and there is a sequence of states r_0, \ldots, r_m and stack strings $s_0, \ldots, s_m \in \Gamma^*$ that satisfy

1.
$$r_0 = q_0$$
 and $s_0 = \varepsilon$.

2. For each *i*, $(r_{i+1}, \gamma') \in \delta(r_i, w_{i+1}, \gamma)$ where $s_i = \gamma t$ and $s_{i+1} = \gamma' t$ for some $\gamma, \gamma' \in \Gamma \cup \{\varepsilon\}$ and $t \in \Gamma^*$.

3. $r_m \in F$.

• $L(M) = \{ w \in \Sigma^* : M \text{ accepts } w \}.$

Harvard CS 121 & CSCI E-207

PDA for $\{w \in \{a, b\}^* : \#_a(w) = \#_b(w)\}$

Equivalence of CFGs and PDAs

Thm: The class of languages recognized by PDAs is the CFLs.

I: For every CFG G, there is a PDA Mwith L(M) = L(G).

II: For every PDA M, there is a CFG Gwith L(G) = L(M).

Proof that every CFL is accepted by some PDA

Let $G = (V, \Sigma, R, S)$

We'll allow a generalized sort of PDA that can push *strings* onto stack.

E.g.,
$$(q, a, b) \mapsto (r, cd)$$

Proof that every CFL is accepted by some PDA

Let $G = (V, \Sigma, R, S)$

We'll allow a generalized sort of PDA that can push *strings* onto stack.

E.g., $(q, a, b) \mapsto (r, cd)$

Then corresponding PDA has just 3 states:

 $q_{
m start} \sim$ start state

 $q_{\rm loop} \sim$ "main loop" state

 $q_{\rm accept} \sim {\rm final \ state}$

Stack alphabet = $V \cup \Sigma \cup \{\$\}$

CFL \Rightarrow **PDA, Continued: The Transitions of the PDA** Transitions:

•
$$\delta(q_{\text{start}}, \varepsilon, \varepsilon) = \{(q_{\text{loop}}, S\$)\}$$

"Start by putting S on the stack, and go to q_{loop} "

• $\delta(q_{\text{loop}}, \varepsilon, A) = \{(q_{\text{loop}}, w)\}$ for each rule $A \to w$

"Remove a variable from the top of the stack and replace it with a corresponding righthand side"

•
$$\delta(q_{\text{loop}}, \sigma, \sigma) = \{(q_{\text{loop}}, \varepsilon)\}$$
 for each $\sigma \in \Sigma$

"Pop a terminal symbol from the stack if it matches the next input symbol"

• $\delta(q_{\text{loop}}, \varepsilon, \$) = \{(q_{\text{accept}}, \varepsilon)\}.$

"Go to accept state if stack contains only \$."

Example

- Consider grammar G with rules $\{S \to aSb, S \to \varepsilon\}$ (so $L(G) = \{a^n b^n : n \ge 0\}$)
- Construct PDA

 $M = (\{q_{\text{start}}, q_{\text{loop}}, q_{\text{accept}}\}, \{a, b\}, \{a, b, S, \$\}, \delta, q_{\text{start}}, \{q_{\text{accept}}\})$ Transition Function δ :

• Derivation $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$

Corresponding Computation:

Proof That For Every PDA M there is a CFG G Such That L(M) = L(G)

- First modify PDA *M* so that
 - Single accept state.
 - All accepting computations end with empty stack.
 - In every step, push a symbol or pop a symbol but not both.

Design of the grammar G **equivalent to PDA** M

- Variables: A_{pq} for every two states p, q of M.
- Goal: A_{pq} generates all strings that can take M from p to q, beginning & ending w/empty stack.

• Rules:

- For all states $p, q, r, A_{pq} \rightarrow A_{pr}A_{rq}$.
- For states p, q, r, s and $\sigma, \tau \in \Sigma$, $A_{pq} \to \sigma A_{rs} \tau$ if there is a stack symbol γ such that $\delta(p, \sigma, \varepsilon)$ contains (r, γ) and $\delta(s, \tau, \gamma)$ contains (q, ε) .
- For every state $p, A_{pp} \rightarrow \varepsilon$.
- Start variable: $A_{q_{start}q_{accept}}$.

Sketch of Proof that the Grammar is Equivalent to the PDA

- Claim: $A_{pq} \Rightarrow^* w$ if and only if w can take M from p to q, beginning & ending w/empty stack.
 - \Rightarrow Proof by induction on length of derivation.
 - \leftarrow Proof by induction on length of computation.
 - Computation of length 0 (base case): Use $A_{pp} \rightarrow \varepsilon$.
 - Stack empties sometime in middle of computation: Use $A_{pq} \rightarrow A_{pr}A_{rq}$.
 - Stack does not empty in middle of computation: Use $A_{pq} \rightarrow \sigma A_{rs} \tau$.

Closure Properties of CFLs

- Thm: The CFLs are the languages accepted by PDAs
- Thm: The CFLs are closed under
 - Union
 - Concatenation
 - Kleene *
 - Intersection with a regular set

The intersection of a CFL and a regular set is a CFL

Pf sketch: Let L_1 be CF and L_2 be regular

 $L_1 = L(M_1)$, M_1 a PDA

 $L_2 = L(M_2)$, M_2 a DFA

 $Q_1 =$ state set of M_1

 $Q_2 = \text{state set of } M_2$

Construct a PDA with state set $Q_1 \times Q_2$ which keeps track of computation of both M_1 and M_2 on input.

Q: Why doesn't this argument work if M_1 and M_2 are both PDAs?

In fact, the intersection of two CFLs is not necessarily CF.

And the complement of a CFL is not necessarily CF

Q: How to prove that languages are not context free?

Pumping Lemma for CFLs (aka Yuvecksy's Theorem ;)

Lemma: If *L* is context-free, then there is a number *p* (the pumping length) such that any $s \in L$ of length at least *p* can be divided into s = uvxyz, where

- 1. $uv^i xy^i z \in L$ for every $i \ge 0$,
- 2. $v \neq \varepsilon$ or $y \neq \varepsilon$, and
- **3.** $|vxy| \leq p$.

Using the Pumping Lemma to Prove Non-Context-Freeness

```
\{a^nb^nc^n:n\geq 0\} is not CF.
```

What are v, y?

- Contain 2 kinds of symbols
- Contain only one kind of symbol
- ⇒ **Corollary:** CFLs not closed under intersection (why?)
- ⇒ Corollary: CFLs not closed under complement (why?)