Harvard CS 121 and CSCI E-207 Lecture 8: Pumping and Other Aspects of Regular Languages

Salil Vadhan

September 27, 2012

• **Reading:** Sipser, §1.4.

Pumping Lemma (Basic Version)

If *L* is regular, then there is a number *p* (the pumping length) such that every string $s \in L$ of length at least *p* can be divided into s = xyz, where $y \neq \varepsilon$ and for every $n \ge 0$, $xy^n z \in L$.

- Why is the part about *p* needed?
- Why is the part about $y \neq \varepsilon$ needed?

Pumping Lemma Example

• Consider

 $L = \{x : x \text{ has an even # of } a$'s and an odd # of b's $\}$

Since L is regular, pumping lemma holds.

(i.e, every sufficiently long string s in L is "pumpable")

• For example, if s = aab, we can write $x = \varepsilon$, y = aa, and z = b.

Pumping the even *a*'s, odd *b*'s language

- Claim: L satisfies pumping lemma with pumping length p = 4.
- Proof:

• **Q:** Can the Pumping Lemma be used to prove that *L* is regular?

Proof of Pumping Lemma

(Another fooling argument)

- Since L is regular, there is a DFA M recognizing L.
- Let p = # states in M.
- Suppose $s \in L$ has length $l \ge p$.
- M passes through a sequence of l + 1 > p states while accepting s (including the first and last states): say, q₀,...,q_l.
- Two of these states must be the same: say, $q_i = q_j$ where i < j

Pumping, continued

Thus, we can break s into x, y, z where y ≠ ε (though x, z may equal ε):

- If more copies of *y* are inserted, *M* "can't tell the difference," i.e., the state entering *y* is the same as the state leaving it.
- So since $xyz \in L$, then $xy^nz \in L$ for all n.

Proof also shows (why?):

- We can take p = # states in smallest DFA recognizing L.
- Can guarantee division s = xyz satisfies $|xy| \le p$ (or $|yz| \le p$).

Use PL to Show Languages are <u>NOT</u> Regular

Claim: $L = \{a^n b^n : n \ge 0\} = \{\varepsilon, ab, aabb, aaabbb, \ldots\}$ is not regular.

Proof by contradiction:

- Suppose that *L* is regular.
- So L has some pumping length p > 0.
- Consider the string $s = a^p b^p$. Since |s| = 2p > p, we can write s = xyz for some strings x, y, z as specified by lemma.
- Claim: No matter how s is partitioned into xyz with $y \neq \varepsilon$, we have $xy^2z \notin L$.
- This violates the conclusion of the pumping lemma, so our assumption that *L* is regular must have been false.

Strings of exponential lengths are a nonregular language

Claim: $L = \{w : |w| = 2^n \text{ for some } n \ge 0\}$ is not regular. Proof:

"Regular Languages Can't Do Unbounded Counting"

Claim: $L = \{w : w \text{ has the same number of } a$'s and b's $\}$ is not regular.

Proof #1:

• Use pumping lemma on $s = a^p b^p$ with $|xy| \le p$ condition.

"Regular Languages Can't Do Unbounded Counting"

Claim: $L = \{w : w \text{ has the same number of } a$'s and b's $\}$ is not regular.

Proof #1:

• Use pumping lemma on $s = a^p b^p$ with $|xy| \le p$ condition.

Proof #2:

• If *L* were regular, then $L \cap a^*b^*$ would also be regular.

Reprise on Regular Languages

Which of the following are necessarily regular?

- A finite language
- A union of a finite number of regular languages
- A union of a countable number of regular languages
- $\{x : x \in L_1 \text{ and } x \notin L_2\}$, L_1 and L_2 are both regular
- A cofinite language (a set is *cofinite* if its complement is finite)
- The reversal of a regular language

Algorithmic questions about regular languages

Given X = a regular expression, DFA, or NFA, how could you tell if:

- $x \in L(X)$, where x is some string?
- $L(X) = \emptyset$?
- $x \in L(X)$ but $x \notin L(Y)$?
- L(X) = L(Y), where Y is another RE/FA?
- L(X) is infinite?
- There are infinitely many strings that belong to both L(X) and L(Y)?