Harvard CS 121 and CSCI E-207 Lecture 8: Pumping and Other Aspects of Regular Languages

Salil Vadhan

September 27, 2012

- Reading: Sipser, §1.4.

Pumping Lemma (Basic Version)

If L is regular, then there is a number p (the pumping length) such that
every string $s \in L$ of length at least p can be divided into $s=x y z$, where $y \neq \varepsilon$ and for every $n \geq 0, x y^{n} z \in L$.
$n=1$

$n=0$

$n=2$

...

- Why is the part about p needed?
- Why is the part about $y \neq \varepsilon$ needed?

Pumping Lemma Example

- Consider

$$
L=\{x: x \text { has an even \# of } a \text { 's and an odd \# of } b \text { 's }\}
$$

- Since L is regular, pumping lemma holds.
(i.e, every sufficiently long string s in L is "pumpable")
- For example, if $s=a a b$, we can write $x=\varepsilon, y=a a$, and $z=b$.

Pumping the even a 's, odd b 's language

- Claim: L satisfies pumping lemma with pumping length $p=4$.
- Proof:
- Q: Can the Pumping Lemma be used to prove that L is regular?

Proof of Pumping Lemma

(Another fooling argument)

- Since L is regular, there is a DFA M recognizing L.
- Let $p=$ \# states in M.
- Suppose $s \in L$ has length $l \geq p$.
- M passes through a sequence of $l+1>p$ states while accepting s (including the first and last states): say, q_{0}, \ldots, q_{l}.
- Two of these states must be the same: say, $q_{i}=q_{j}$ where $i<j$

Pumping, continued

- Thus, we can break s into x, y, z where $y \neq \varepsilon$ (though x, z may equal ε):

- If more copies of y are inserted, M "can't tell the difference," i.e., the state entering y is the same as the state leaving it.
- So since $x y z \in L$, then $x y^{n} z \in L$ for all n.

Proof also shows (why?):

- We can take $p=$ \# states in smallest DFA recognizing L.
- Can guarantee division $s=x y z$ satisfies $|x y| \leq p($ or $|y z| \leq p){ }_{5}$

Use PL to Show Languages are NOT Regular

Claim: $L=\left\{a^{n} b^{n}: n \geq 0\right\}=\{\varepsilon, a b, a a b b, a a a b b b, \ldots\}$ is not regular.
Proof by contradiction:

- Suppose that L is regular.
- So L has some pumping length $p>0$.
- Consider the string $s=a^{p} b^{p}$. Since $|s|=2 p>p$, we can write $s=x y z$ for some strings x, y, z as specified by lemma.
- Claim: No matter how s is partitioned into $x y z$ with $y \neq \varepsilon$, we have $x y^{2} z \notin L$.
- This violates the conclusion of the pumping lemma, so our assumption that L is regular must have been false.

Strings of exponential lengths are a nonregular language

Claim: $L=\left\{w:|w|=2^{n}\right.$ for some $\left.n \geq 0\right\}$ is not regular. Proof:

"Regular Languages Can't Do Unbounded Counting"

Claim: $L=\{w: w$ has the same number of a 's and b 's $\}$ is not regular.

Proof \#1:

- Use pumping lemma on $s=a^{p} b^{p}$ with $|x y| \leq p$ condition.

"Regular Languages Can't Do Unbounded Counting"

Claim: $L=\{w: w$ has the same number of a 's and b 's $\}$ is not regular.
Proof \#1:

- Use pumping lemma on $s=a^{p} b^{p}$ with $|x y| \leq p$ condition.

Proof \#2:

- If L were regular, then $L \cap a^{*} b^{*}$ would also be regular.

Reprise on Regular Languages

Which of the following are necessarily regular?

- A finite language
- A union of a finite number of regular languages
- A union of a countable number of regular languages
- $\left\{x: x \in L_{1}\right.$ and $\left.x \notin L_{2}\right\}, L_{1}$ and L_{2} are both regular
- A cofinite language (a set is cofinite if its complement is finite)
- The reversal of a regular language

Algorithmic questions about regular languages

Given $X=$ a regular expression, DFA, or NFA, how could you tell if:

- $x \in L(X)$, where x is some string?
- $L(X)=\emptyset$?
- $x \in L(X)$ but $x \notin L(Y)$?
- $L(X)=L(Y)$, where Y is another RE/FA?
- $L(X)$ is infinite?
- There are infinitely many strings that belong to both $L(X)$ and $L(Y)$?

