
Harvard CS 121 and CSCI E-207
Lecture 8: Pumping and Other Aspects of

Regular Languages

Salil Vadhan

September 27, 2012

• Reading: Sipser, §1.4.

Harvard CS 121 & CSCI E-207 September 27, 2012

Pumping Lemma (Basic Version)

If L is regular, then there is a number p (the pumping length)
such that

every string s ∈ L of length at least p
can be divided into s = xyz, where y 6= ε and

for every n ≥ 0, xynz ∈ L.

n = 1 x y z

n = 0 x z

n = 2 x y y z

. . .

• Why is the part about p needed?

• Why is the part about y 6= ε needed?

1

Harvard CS 121 & CSCI E-207 September 27, 2012

Pumping Lemma Example

• Consider

L = {x : x has an even # of a’s and an odd # of b’s}

• Since L is regular, pumping lemma holds.

(i.e, every sufficiently long string s in L is “pumpable”)

• For example, if s = aab, we can write x = ε, y = aa, and z = b.

2

Harvard CS 121 & CSCI E-207 September 27, 2012

Pumping the even a’s, odd b’s language

• Claim: L satisfies pumping lemma with pumping length p = 4.

• Proof:

• Q: Can the Pumping Lemma be used to prove that L is
regular?

3

Harvard CS 121 & CSCI E-207 September 27, 2012

Proof of Pumping Lemma

(Another fooling argument)

• Since L is regular, there is a DFA M recognizing L.

• Let p = # states in M .

• Suppose s ∈ L has length l ≥ p.

• M passes through a sequence of l + 1 > p states while
accepting s (including the first and last states): say, q0, . . . , ql.

• Two of these states must be the same: say, qi = qj where i < j

4

Harvard CS 121 & CSCI E-207 September 27, 2012

Pumping, continued

• Thus, we can break s into x, y, z where y 6= ε (though x, z may
equal ε):

The Pumping Lemma 2

Proof of Pumping Lemma

• Since L is regular, there is a DFA M accepting L.

• Let p = # states in M .

• Suppose s ∈ L has length l ≥ p.

• M passes through a sequence of l + 1 > p states while accepting s (including the first and last
states): say, q0, . . . , ql.

• Two of these states must be the same: say, qi = qj where i < j

• Thus, we can break s into x, y, z where y #= ε (though x, z may equal ε):

x y z

M in state qi M in state qj = qi

• If more copies of y are inserted, M “can’t tell the difference,” i.e., the state entering y is the
same as the state leaving it.

• So since xyz ∈ L, then xynz ∈ L for all n.

Proof also shows:

• We can take p = # states in smallest DFA recognizing L.

• Can guarantee division s = xyz satisfies |xy| ≤ p (or |yz| ≤ p).

• If more copies of y are inserted, M “can’t tell the difference,”
i.e., the state entering y is the same as the state leaving it.

• So since xyz ∈ L, then xynz ∈ L for all n.

Proof also shows (why?):

• We can take p = # states in smallest DFA recognizing L.

• Can guarantee division s = xyz satisfies |xy| ≤ p (or |yz| ≤ p).
5

Harvard CS 121 & CSCI E-207 September 27, 2012

Use PL to Show Languages are NOT Regular

Claim: L = {anbn : n ≥ 0} = {ε, ab, aabb, aaabbb, . . .} is not
regular.

Proof by contradiction:
• Suppose that L is regular.

• So L has some pumping length p > 0.

• Consider the string s = apbp. Since |s| = 2p > p, we can write
s = xyz for some strings x, y, z as specified by lemma.

• Claim: No matter how s is partitioned into xyz with y 6= ε, we
have xy2z /∈ L.

• This violates the conclusion of the pumping lemma, so our
assumption that L is regular must have been false.

6

Harvard CS 121 & CSCI E-207 September 27, 2012

Strings of exponential lengths are a nonregular language

Claim: L = {w : |w| = 2n for some n ≥ 0} is not regular.

Proof:

7

Harvard CS 121 & CSCI E-207 September 27, 2012

“Regular Languages Can’t Do Unbounded Counting”

Claim: L = {w : w has the same number of a’s and b’s} is not
regular.

Proof #1:

• Use pumping lemma on s = apbp with |xy| ≤ p condition.

8

Harvard CS 121 & CSCI E-207 September 27, 2012

“Regular Languages Can’t Do Unbounded Counting”

Claim: L = {w : w has the same number of a’s and b’s} is not
regular.

Proof #1:

• Use pumping lemma on s = apbp with |xy| ≤ p condition.

Proof #2:

• If L were regular, then L ∩ a∗b∗ would also be regular.

9

Harvard CS 121 & CSCI E-207 September 27, 2012

Reprise on Regular Languages

Which of the following are necessarily regular?

• A finite language

• A union of a finite number of regular languages

• A union of a countable number of regular languages

• {x : x ∈ L1 and x /∈ L2}, L1 and L2 are both regular

• A cofinite language (a set is cofinite if its complement is finite)

• The reversal of a regular language

10

Harvard CS 121 & CSCI E-207 September 27, 2012

Algorithmic questions about regular languages

Given X = a regular expression, DFA, or NFA,
how could you tell if:

• x ∈ L(X), where x is some string?

• L(X) = ∅?

• x ∈ L(X) but x /∈ L(Y)?

• L(X) = L(Y), where Y is another RE/FA?

• L(X) is infinite?

• There are infinitely many strings that belong to both L(X) and
L(Y)?

11

