Harvard CS 121 and CSCI E-207 Lecture 5: Regular Expressions

Salil Vadhan

September 18, 2012

- Reading: Sipser, §1.3.

Regular Expressions

- Let $\Sigma=\{a, b\}$. The regular expressions over Σ are certain expressions formed using the symbols $\left\{a, b,(),, \varepsilon, \emptyset, \cup, \circ,{ }^{*}\right\}$
- We use red for the strings under discussion (the object language) and black for the ordinary notation we are using for doing mathematics (the metalanguage).
- Construction Rules (= inductive/recursive definition):

1. $a, b, \varepsilon, \emptyset$ are regular expressions (of size 1)
2. If R_{1} and R_{2} are REs (of size s_{1} and s_{2}), then
($R_{1} \circ R_{2}$), ($R_{1} \cup R_{2}$), and (R_{1}^{*}) are REs
(of sizes $s_{1}+s_{2}+1, s_{1}+s_{2}+1$, and $s_{1}+1$, respectively).

- Examples:

$$
\begin{equation*}
(a \circ b) \tag{*}
\end{equation*}
$$

$$
\left(\left(\left(\left(a \circ\left(b^{*}\right)\right) \circ c\right) \cup\left(\left(b^{*}\right) \circ a\right)\right)^{*}\right)
$$

What REs Do

- Regular expressions (which are strings) represent languages (which are sets of strings), via the function L :
(1)

$$
\begin{equation*}
L(b)=\{b\} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
L(\varepsilon)=\{\varepsilon\} \tag{3}
\end{equation*}
$$

(3)

$$
L(a)=\{a\}
$$

$$
L(\emptyset)=\emptyset
$$

$$
\begin{equation*}
L\left(\left(R_{1} \circ R_{2}\right)\right)=L\left(R_{1}\right) \circ L\left(R_{2}\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\text { (5) } L\left(\left(R_{1} \cup R_{2}\right)\right)=L\left(R_{1}\right) \cup L\left(R_{2}\right) \tag{4}
\end{equation*}
$$

(6)

$$
L\left(\left(R_{1}^{*}\right)\right)=L\left(R_{1}\right)^{*}
$$

- Example:

$$
L\left(\left(\left(a^{*}\right) \circ\left(b^{*}\right)\right)\right)=
$$

- $L(\cdot)$ is called the semantics of the expression.

Syntactic Shorthand

- Omit many parentheses, because union and concatenation of languages are associative. For example, for any languages L_{1}, L_{2}, L_{3} :
$\left(L_{1} L_{2}\right) L_{3}=L_{1}\left(L_{2} L_{3}\right)$
and therefore for any regular expressions R_{1}, R_{2}, R_{3},
$L\left(\left(R_{1} \circ\left(R_{2} \circ R_{3}\right)\right)\right)=L\left(\left(\left(R_{1} \circ\left(R_{2} \circ R_{3}\right)\right)\right)\right.$
- Omit \circ symbol
- Drop the distinction between red and black, between object language and metalanguage.

Semantic equivalence

The following are equivalent:

$$
((a b) c) \quad(a(b c)) \quad a b c
$$

or strictly speaking

$$
((a \circ b) \circ c) \quad(a \circ(b \circ c))
$$

- Equivalent means:
"same semantics—same $L(\cdot)$-value-maybe different syntax"

More syntactic sugar

- By convention, * takes precedence over \circ, which takes precedence over \cup.

So $a \cup b c^{*}$ is equivalent to $\left(a \cup\left(b \circ\left(c^{*}\right)\right)\right)$.

- Σ is shorthand for $a \cup b$ (or the analogous RE for whatever alphabet is in use).

Examples of Regular Languages

Strings ending in $a=\Sigma^{*} a$
Strings containing the substring $a b a a b=$?
$(a a \cup a b \cup b a \cup b b)^{*}=$?
Strings with even \# of a 's $=\left(b \cup a b^{*} a\right)^{*}$

$$
=b^{*}\left(a b^{*} a b^{*}\right)^{*}
$$

Strings with \leq two a 's $=$?
Strings of form $x_{1} x_{2} \cdots x_{k}, k \geq 0$, each $x_{i} \in\{a a b, a a b a, a a a\}=$?
Decimal numerals, no leading zeroes

$$
=0 \cup\left((1 \cup \ldots \cup 9)(0 \cup \ldots \cup 9)^{*}\right)
$$

All strings with an even \# of a 's and an even \# of b 's

$$
=\left(b \cup a b^{*} a\right)^{*} \cap\left(a \cup b a^{*} b\right)^{*} \quad \text { but this isn't a regular expression }
$$

Equivalence of REs and FAs

Recall: we call a language regular if there is a finite automaton that recognizes it.

Theorem: For every regular expression $R, L(R)$ is regular.

Proof:

Induct on the construction of regular expressions ("structural induction").

Base Case: R is a, b, ε, or \emptyset

accepts $\{\sigma\}$

accepts $\emptyset \quad$ accepts $\{\varepsilon\}$

Equivalence of REs and FAs, continued

Inductive Step: If R_{1} and R_{2} are REs and $L\left(R_{1}\right)$ and $L\left(R_{2}\right)$ are regular (inductive hyp.), then so are:

$$
\begin{aligned}
L\left(\left(R_{1} \circ R_{2}\right)\right) & =L\left(R_{1}\right) \circ L\left(R_{2}\right) \\
L\left(\left(R_{1} \cup R_{2}\right)\right) & =L\left(R_{1}\right) \cup L\left(R_{2}\right) \\
L\left(\left(R_{1}^{*}\right)\right) & =L\left(R_{1}\right)^{*}
\end{aligned}
$$

(By the closure properties of the regular languages).
Proof is constructive (actually produces the equivalent finite automaton, not just proves its existence).

Example Conversion of a RE to a FA

$$
(a \cup \varepsilon)(a a \cup b b)^{*}
$$

The Other Direction

Theorem: For every regular language L, there is a regular expression R such that $L(R)=L$.

Proof: Next time.

