Harvard CS 121 and CSCI E-207 Lecture 5: Regular Expressions

Salil Vadhan

September 18, 2012

• **Reading:** Sipser, §1.3.

Regular Expressions

- Let Σ = {a, b}. The regular expressions over Σ are certain expressions formed using the symbols {a, b, (,), ε, Ø, ∪, ∘, *}
- We use red for the strings under discussion (the object language) and black for the ordinary notation we are using for doing mathematics (the metalanguage).
- Construction Rules (= inductive/recursive definition):
 - 1. $a, b, \varepsilon, \emptyset$ are regular expressions (of size 1)
 - 2. If R_1 and R_2 are REs (of size s_1 and s_2), then $(R_1 \circ R_2), (R_1 \cup R_2)$, and (R_1^*) are REs (of sizes $s_1 + s_2 + 1$, $s_1 + s_2 + 1$, and $s_1 + 1$, respectively).
- Examples:

 $(a \circ b) \qquad \qquad ((((a \circ (b^*)) \circ c) \cup ((b^*) \circ a))^*) \qquad \qquad (\emptyset^*)$

What REs Do

• Regular expressions (which are strings) represent languages (which are sets of strings), via the function *L*:

(1)
$$L(a) = \{a\}$$

(2) $L(b) = \{b\}$
(3) $L(\varepsilon) = \{\varepsilon\}$
(3) $L(\emptyset) = \emptyset$
(4) $L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$
(5) $L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$
(6) $L((R_1^*)) = L(R_1)^*$

• Example:

 $L(((a^*) \circ (b^*))) =$

• $L(\cdot)$ is called the **semantics** of the expression.

Syntactic Shorthand

• Omit many parentheses, because union and concatenation of languages are associative. For example,

for any languages L_1, L_2, L_3 :

$$(L_1L_2)L_3 = L_1(L_2L_3)$$

and therefore for any regular expressions R_1, R_2, R_3 , $L((R_1 \circ (R_2 \circ R_3))) = L(((R_1 \circ (R_2 \circ R_3))))$

- Omit symbol
- Drop the distinction between red and black, between object language and metalanguage.

Semantic equivalence

The following are equivalent: ((ab)c) (a(bc)) abcor strictly speaking $((a \circ b) \circ c)$ $(a \circ (b \circ c))$

• Equivalent means:

"same semantics—same $L(\cdot)$ -value—maybe different syntax"

More syntactic sugar

 By convention, * takes precedence over ○, which takes precedence over ∪.

So $a \cup bc^*$ is equivalent to $(a \cup (b \circ (c^*)))$.

 ∑ is shorthand for a ∪ b (or the analogous RE for whatever alphabet is in use). Harvard CS 121 & CSCI E-207

Examples of Regular Languages

Strings ending in $a = \Sigma^* a$

Strings containing the substring abaab = ?

 $(aa \cup ab \cup ba \cup bb)^* = ?$

Strings with even # of a's = $(b \cup ab^*a)^*$ = $b^*(ab^*ab^*)^*$

Strings with \leq two a's = ?

Strings of form $x_1x_2 \cdots x_k$, $k \ge 0$, each $x_i \in \{aab, aaba, aaa\} = ?$

Decimal numerals, no leading zeroes

 $= 0 \cup ((1 \cup \ldots \cup 9)(0 \cup \ldots \cup 9)^*)$

All strings with an even # of a's and an even # of b's = $(b \cup ab^*a)^* \cap (a \cup ba^*b)^*$ but this isn't a regular expression

Equivalence of REs and FAs

Recall: we call a language **regular** if there is a finite automaton that recognizes it.

<u>Theorem</u>: For every regular expression R, L(R) is regular. **Proof:**

Induct on the construction of regular expressions ("structural induction").

<u>Base Case:</u> R is a, b, ε , or \emptyset

Equivalence of REs and FAs, continued

Inductive Step: If R_1 and R_2 are REs and $L(R_1)$ and $L(R_2)$ are regular (inductive hyp.), then so are:

$$L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$$
$$L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$$
$$L((R_1^*)) = L(R_1)^*$$

(By the closure properties of the regular languages).

Proof is <u>constructive</u> (actually produces the equivalent finite automaton, not just proves its existence).

Example Conversion of a RE to a FA

 $(a \cup \varepsilon)(aa \cup bb)^*$

The Other Direction

<u>**Theorem</u></u>: For every regular language L, there is a regular expression R such that L(R) = L.</u>**

Proof: Next time.