Harvard CS 121 and CSCI E-207
Lecture 5:
Regular Expressions
Salil Vadhan

September 18, 2012

e Reading: Sipser, §1.3.



Harvard CS 121 & CSCI E-207 September 18, 2012

Regular Expressions

e et > = {a,b}. The regular expressions over X are certain
expressions formed using the symbols {a, b, (,),s,0,U, 0, *}

e We use red for the strings under discussion (the object
language) and black for the ordinary notation we are using for
doing mathematics (the metalanguage).

e Construction Rules (= inductive/recursive definition):
1. a, b, €, () are regular expressions (of size 1)

2. It R, and Rs are REs (of size s; and s5), then
(RioR5), (R1UR5), and (R7) are REs
(of sizes s1 + s2 + 1, s1 + s2 + 1, and sy + 1, respectively).

e Examples:

(a o) (((ao (%)) e c)U((07) 0a))”) (07)

1



Harvard CS 121 & CSCI E-207 September 18, 2012

What REs Do

e Reqgular expressions (which are strings) represent languages
(which are sets of strings), via the function L:

(1) L(a) = {a}
(2) L(b) = {b}
(3) L(e) = {e}
(3) L©) = 0
(4) L((RioRs)) = L(Ry)o L(Ry)
(5) L((RUR3)) = L(Ry)UL(R3)
(6) L((Ry)) = L(R1)"
e Example:
L(((a") o (b7))) =

e [.(-) is called the semantics of the expression.



Harvard CS 121 & CSCI E-207 September 18, 2012

Syntactic Shorthand

e Omit many parentheses, because union and concatenation of
languages are associative. For example,

for any languages L1, Lo, Ls:

(L1Ls)Ls = Ly(LoL3)
and therefore for any regular expressions R, R, Rs,
L((Rlo(RQORg))) — L(((Rlo(RQORg)))

e Omit o symbol

e Drop the distinction between red and black, between object
language and metalanguage.



Harvard CS 121 & CSCI E-207 September 18, 2012

Semantic equivalence

The following are equivalent:
((ab)c) (a(bc)) abc
or strictly speaking
((aob)oc) (ao (boc))

e Equivalent means:

“same semantics—same L(-)-value—maybe different syntax”



Harvard CS 121 & CSCI E-207 September 18, 2012

More syntactic sugar

e By convention, x takes precedence over o, which takes
precedence over U.

S0 a U bc* is equivalent to (a U (bo (c*))).

e > is shorthand for a U b (or the analogous RE for whatever
alphabet is in use).



Harvard CS 121 & CSCI E-207 September 18, 2012

Examples of Regular Languages

Strings ending in a = X*a
Strings containing the substring abaab = ?
(aa UabUbaUbb)* =7

Strings with even # of a’s = (b U ab*a)*
= b*(ab*ab*)*

Strings with < two a’'s = ?
Strings of form xixs - - - x, k > 0, each x; € {aab, aaba, aaa} = 7?

Decimal numerals, no leading zeroes
=0U((1U...U9)(0U...U9)*)

All strings with an even # of a’'s and an even # of b’s
= (bUab*a)* N (aUba*b)* but this isn’t a regular expression

6



Harvard CS 121 & CSCI E-207 September 18, 2012

Equivalence of REs and FAs

Recall: we call a language regular if there is a finite automaton
that recognizes it.

Theorem: For every regular expression R, L(R) is regular.

Proof:

Induct on the construction of regular expressions (“structural
induction”).

Base Case: Ris a, b, e, or

O——0 O O
accepts {o} accepts () accepts {¢}



Harvard CS 121 & CSCI E-207 September 18, 2012

Equivalence of REs and FAs, continued

Inductive Step: If R, and R, are REs and L(R;) and L(R5) are
regular (inductive hyp.), then so are:

L((RioRs)) = L(Ry)o L(Rs)
L((RWURy)) = L(Ry)U L(Ry)
L((Ry)) = L(R1)"

(By the closure properties of the regular languages).

Proof is constructive (actually produces the equivalent finite
automaton, not just proves its existence).




Harvard CS 121 & CSCI E-207 September 18, 2012

Example Conversion of a RE to a FA

(aUe)(aa U bb)*



Harvard CS 121 & CSCI E-207 September 18, 2012

The Other Direction

Theorem: For every regular language L, there is a regular
expression R such that L(R) = L.

Proof: Next time.

10



