
Harvard CS 121 and CSCI E-207
Lecture 18: Reductions

Salil Vadhan

November 6, 2012

• Reading: Sipser §5.1, §5.3

Harvard CS 121 & CSCI E-207 November 6, 2012

Formalizing the Notion of Reduction

• L1 “reduces” to L2 if we can use a “black box” for L2 to build an
algorithm for L1.

• A function f : Σ∗1 → Σ∗2 is computable if there is a Turing
machine that for every input w ∈ Σ∗1, M halts with just f(w) on
its tape.

• A (mapping) reduction of L1 ⊆ Σ∗1 to L2 ⊆ Σ∗2 is a computable
function
f : Σ∗1 → Σ∗2 such that, for any w ∈ Σ∗,

w ∈ L1 iff f(w) ∈ L2

We write L1 ≤m L2.

1

Harvard CS 121 & CSCI E-207 November 6, 2012

Properties of Reducibility

Lemma: If L1 ≤m L2, then

• if L2 is decidable (resp., r.e.), then so is L1;

• if L1 is undecidable (resp., non-r.e.), then so is L2.

More Turing-recognizability, Undecidability 2

(⇐) Conversely, suppose M enumerates L. We want to show that L is RE...

Theorem (PS 7): L is recursive iff L is enumerable in lexicographic order.

Formalizing the Notion of Reduction

• L1 “reduces” to L2 if we can use a “black box” for L2 to build an algorithm for L1.

• A function f : Σ∗
1 → Σ∗

2 is computable if there is a Turing machine that for every input w ∈ Σ∗
1,

M halts with just f(w) on its tape.

• A (mapping) reduction of L1 ⊆ Σ∗
1 to L2 ⊆ Σ∗

2 is a computable function
f : Σ∗

1 → Σ∗
2 such that, for any w ∈ Σ∗,

w ∈ L1 iff f(w) ∈ L2

We write L1 ≤m L2.

• If L1 ≤m L2, then

– if L2 is decidable (resp., Turing-recognizable), then so is L1;

– if L1 is undecidable (resp., non-Turing-recognizable), then so is L2.

f computableΣ∗
1 Σ∗

2

L1 L2

Examples from last time:

– For every Turing-recognizable L, L ≤m ATM.

– ATM ≤m HALTTM.

– HALTTM ≤m Lε.

2

Harvard CS 121 & CSCI E-207 November 6, 2012

Examples of Reductions from Last Lecture

• For every Turing-recognizable L, L ≤m ATM.

• ATM ≤m HALTTM.

• HALTTM ≤m HALTε
TM.

3

Harvard CS 121 & CSCI E-207 November 6, 2012

Rice’s Theorem

Informally: every (nontrivial) property of Turing-recognizable
languages is undecidable.

Rice’s Theorem: Let P be any subset of the class of r.e.
languages such that P and its complement are both nonempty.
Then the language LP = {〈M〉 : L(M) ∈ P} is undecidable.

Thus, given a TM M , it is undecidable to tell if

• L(M) = ∅,

• L(M) is regular,

• |L(M)| =∞, etc.

4

Harvard CS 121 & CSCI E-207 November 6, 2012

Proof of Rice’s Theorem

• We will reduce HALTε
TM to LP.

• Suppose without loss of generality that ∅ /∈ P.

• Pick any L0 ∈ P and say L0 = L(M0).

• Define f(〈M〉) = 〈M ′〉, where

M ′ is TM that on input w,

· first simulates M on input ε

· then simulates M0 on input w

• Claim: f is a mapping reduction from HALTε
TM to LP.

• Since HALTε
TM is undecidable, so is LP.

5

Harvard CS 121 & CSCI E-207 November 6, 2012

An Undecidable Problem about Context Free Grammars

Theorem: It is undecidable to determine, given CFGs G1 and
G2, whether L(G1) ∩ L(G2) = ∅.

Proof: Reduction from ATM, via “computation histories”.

• Given 〈M,w〉, we can construct a CFG G1 such that:

L(G1) = {C1#D
R
1 #C2#D

R
2 # · · ·#Cn#DR

n :

n ≥ 1, the Ci and Di are configurations of M ,
and for each i, Ci⇒M Di }.

6

Harvard CS 121 & CSCI E-207 November 6, 2012

Intersection of CFLs, continued

• Similarly, we can construct a CFG G2 such that

L(G2) =

{q0w#CR
1 #D1#C

R
2 #D2# · · ·#CR

n #Dn#uqacceptv :

n ≥ 0,∀i Ci yields Di, u, v ∈ Γ∗}.

• Then L(G1) ∩ L(G2) is nonempty iff M accepts w.

Verifying computations is easier than carrying them out!

7

Harvard CS 121 & CSCI E-207 November 6, 2012

Tiling

Tiling: Given a finite set of patterns for square tiles:

More Turing-recognizability, Undecidability 5

Tiling

Tiling: Given a finite set of patterns for square tiles:

Is it possible to tile the whole plane with tiles of these patterns in such a way that the abutting
edges match?

.

.

.

. . .
.

.

.

Theorem: Tiling is undecidable.

Variant of tiling: fix the tile at the origin and ask whether the first quadrant can be tiled (easier
to show undecidability).

Proof by reduction from Lε:

– 〈M〉
f
#→ sets of tiles so that:

M does not halt on ε ⇔ f(〈M〉) tiles the first quadrant.

– View computation of M as “tableau”, filling first quadrant with elements of C = Q ∪ Γ,
each row being a configuration of M .

– Computation valid iff every 2 × 3 window consistent with transition function of M (and
bottom row is correct initial configuration).

– Each tile represents a 2× 3 window of tableau. Edge colors force consistency with neighbors
on overlap.

Is it possible to tile the whole plane with tiles of these patterns
in such a way that the abutting edges match?

More Turing-recognizability, Undecidability 5

Tiling

Tiling: Given a finite set of patterns for square tiles:

Is it possible to tile the whole plane with tiles of these patterns in such a way that the abutting
edges match?

.

.

.

. . .
.

.

.

Theorem: Tiling is undecidable.

Variant of tiling: fix the tile at the origin and ask whether the first quadrant can be tiled (easier
to show undecidability).

Proof by reduction from Lε:

– 〈M〉
f
#→ sets of tiles so that:

M does not halt on ε ⇔ f(〈M〉) tiles the first quadrant.

– View computation of M as “tableau”, filling first quadrant with elements of C = Q ∪ Γ,
each row being a configuration of M .

– Computation valid iff every 2 × 3 window consistent with transition function of M (and
bottom row is correct initial configuration).

– Each tile represents a 2× 3 window of tableau. Edge colors force consistency with neighbors
on overlap.

Theorem: Tiling is undecidable.

8

Harvard CS 121 & CSCI E-207 November 6, 2012

Tiling, continued

Variant of tiling: fix the tile at the origin and ask whether the
first quadrant can be tiled (easier to show undecidability).

Proof by reduction from HALTε
TM:

• 〈M〉 f7→ sets of tiles so that:

M does not halt on ε⇔ f(〈M〉) tiles the first quadrant.

• View computation of M as “tableau”, filling first quadrant with
elements of C = Q∪ Γ, each row being a configuration of M .

• Computation valid iff every 2× 3 window consistent with
transition function of M (and bottom row is correct initial
configuration).

• Each tile represents a 2× 3 window of tableau. Edge colors
force consistency with neighbors on overlap.

9

Harvard CS 121 & CSCI E-207 November 6, 2012

Diophantine Equations

These are equations like

x3y3 + 13xyz = 4u2 − 22

The coefficients and the exponents have to be integers. (No
variables in the exponents!)

The question is whether the equation can be satisfied (made
true) by substituting integers for the variables—this is known
as Hilbert’s 10th problem.

10

Harvard CS 121 & CSCI E-207 November 6, 2012

Diophantus of Alexandria (200-284 AD)

• “God gave him his boyhood one-sixth of his life, One twelfth
more as youth while whiskers grew rife; And then yet
one-seventh ere marriage begun; In five years there came a
bouncing new son. Alas, the dear child of master and sage,
after attaining half the measure of his father’s life, chill fate took
him. After consoling his fate by the science of numbers for four
years, he ended his life.”

• Other problems concerning triangular arrays, etc., gave rise to
quadratic equations.

• Fermat’s statement of his ”Last Theorem” was in the margin of
his copy of Diophantus.

11

Harvard CS 121 & CSCI E-207 November 6, 2012

“Hilbert’s 10th Problem”

Thm (Matiyasevich, 1970): Hilbert’s 10th problem is
unsolvable.

12

Harvard CS 121 & CSCI E-207 November 6, 2012

Relation to Gödel’s Incompleteness Theorem

Fix an axiom systems for mathematics, e.g.

• Peano arithmetic — attempt to capture properties of N

E.g. [φ(0) ∧ (∀n (φ(n)⇒ φ(n+ 1)))]⇒ ∀nφ(n).

What axiom is this?

• Zermelo-Frankel-Choice set theory (ZFC) — enough for all
of modern mathematics

Proofs of theorems from these axiom systems defined by
(simple) rules of mathematical logic.

13

Harvard CS 121 & CSCI E-207 November 6, 2012

The Decision Problem (for Mathematics)

• Entscheidungsproblem is German for “Decision Problem”

• The Decision Problem is the problem of determining whether a
mathematical statement is provable

• Proposition: Set of provable theorems is Turing-recognizable.

Proof:

• Q: Is it decidable?

14

Harvard CS 121 & CSCI E-207 November 6, 2012

Undecidability of mathematics

Theorem [Church, Turing]: Set of provable statements of
arithmetic (in any consistent extension of Peano arithmetic) is
undecidable.

Proof sketch:

• Reduce from HALTε
TM.

• 〈M〉 7→
mathematical statement φM = “(∃n)M halts on ε after n steps”.

• Claim: M halts on ε iff φM is provable.

15

Harvard CS 121 & CSCI E-207 November 6, 2012

Incompleteness of Mathematics

Gödel’s Incompleteness Theorem: There is a statement φ in
arithmetic such that neither φ nor ¬φ is provable (in any
consistent and r.e. extension of Peano arithmetic).

Proof sketch:

• Supoose for contradiction that for all statements φ, either φ
or ¬φ is provable. By consistency, both cannot be provable.

⇒ Set of provable theorems r.e. and co-r.e.

⇒ Set of provable theorems decidable.

• Contradiction.

Remark: Combined with previous proof, we see that it must be
that a statement of the form ¬φM must be unprovable.

16

Harvard CS 121 & CSCI E-207 November 6, 2012

Coping with Undecidability

• Restrict to decidable special cases (e.g. quadratic diophantine
equations).

• Use heuristics that are correct when they halt, but with no
guarantee of halting on all inputs.

• Use programming languages whose syntactic structure makes
it possible to detect or prevent certain kinds of bugs (e.g.
type-safe languages).

• Formal verification: for small-scale programs, generate a
formal proof that the program meets a formal specification
(often with hints from programmer, such as loop invariants).

17

