Harvard CS121 and CSCI E-207 Lecture 2: Strings, Languages, and Induction

Salil Vadhan

September 6, 2012

Reading: Sipser, Ch. 0 and $\S 1.1$

Strings and Languages

- Symbol a, b, \ldots
- Alphabet A finite, nonempty set of symbols
usually denoted by Σ
- String (informal) Finite number of symbols "put together"
e.g. $a b b a, b, b b$

Empty string denoted by ε

- $\Sigma^{*}=$ set of all strings over alphabet Σ

$$
\text { e.g. }\{a, b\}^{*}=\{\varepsilon, a, b, a a, a b, \ldots\}
$$

More on Strings

- Length of a string x is written $|x|$

$$
\begin{aligned}
& |a b b a|=4 \\
& |a|=1 \\
& |\varepsilon|=0
\end{aligned}
$$

The set of strings of length n is denoted Σ^{n}.

Concatenation

- Concatenation of strings

Written as $x \cdot y$, or just $x y$
Just follow the symbols of x by the symbols of y

$$
\begin{aligned}
& x=a b b a, y=b \Rightarrow x y=a b b a b \\
& x \varepsilon=\varepsilon x=x \text { for any } x
\end{aligned}
$$

- The reversal x^{R} of a string x is x written backwards.

$$
\text { If } x=x_{1} x_{2} \cdots x_{n}, \text { then } x^{R}=x_{n} x_{n-1} \cdots x_{1} .
$$

Formal Inductive Definitions

- Like recursive data structures and recursive procedures when programming.
- Strings and their length:

Base Case: ε is a string of length 0 .
Induction: If x is a string of length n and $\sigma \in \Sigma$, then $x \sigma$ is a string of length $n+1$.
(i.e. start with ε and add one symbol at a time, like $\varepsilon a a b a$, but we don't write the initial ε unless the string is empty)

- Like how one would program a string type, eg in OCaml: type string = Epsilon | Append of string*char

Inductive definitions of string operations

- The concatenation of x and y, defined by induction on $|y|$.

$$
[|y|=0] \quad x \cdot \varepsilon=x
$$

$$
[|y|=n+1] \text { write } y=z \sigma \text { for some }|z|=n, \sigma \in \Sigma
$$

$$
\text { define } x \cdot(z \sigma)=(x \cdot z) \sigma \text {, }
$$

- Like how one might program concatenation, eg in OCaml:

```
let rec concatenate (a:string) (b:string) : string =
    match b with
    | Epsilon -> a
    | Append(s, c) -> Append(concatenate a s, c)
```

- Such definitions are formally justified using the same Principle of Mathematical Induction used in proofs by induction.

Inductive definitions of string operations

- Facts: For all strings x, y, z,

1. $(x \cdot y) \cdot z=x \cdot(y \cdot z)$
\Rightarrow we can drop parentheses and write $x y z$.
2. $\varepsilon \cdot x=x$,

- The reversal of x, defined by induction on $|x|$:
- Like recursive procedures to compute these operations.

Structural Induction

When doing proofs about inductively defined objects, it is often useful to perform induction on the size of the object.
Proposition: $\quad(x y)^{R}=y^{R} x^{R} \quad$ for every $x, y \in \Sigma^{*}$
Proof by induction on $|y|$:
Base Case: $|y|=0$. Then $y=\varepsilon$

Induction Hypothesis: Assume $(u v)^{R}=v^{R} u^{R}$ for all u, v such that $|v| \leq n$

Proof, continued

Induction Step: Let $|y|=n+1$, and say $y=z \sigma$, where $|z|=n$, $\sigma \in \Sigma$. Then:

Proofs by Induction

To prove $P(n)$ for all $n \in \mathcal{N}$:

1. "Base Case": Prove $P(0)$.
2. "Induction Hypothesis": Assume that $P(k)$ holds for all $k \leq n$ (where n is fixed but arbitrary)
3. "Induction Step": Given induction hypothesis, prove that $P(n+1)$ holds.

If we prove the Base Case and the Induction Step, then we have proved that $P(n)$ holds for $n=0,1,2, \ldots$ (i.e., for all $n \in \mathcal{N}$)

Proofs vs. Programs

- There is a close parallel between formal mathematical proofs and computer programs (so doing proofs should make you a better programmer).
- BUT we generally write proofs to be read by people, not computers. Thus we use English prose and omit some low-level formalism when not needed to express our reasoning clearly.
- If it were just one step in a more complex proof, it would usually be OK to justify $(x y)^{R}=y^{R} x^{R}$ by writing

$$
\begin{aligned}
& \left(x_{1} x_{2} \cdots x_{n-1} x_{n} y_{1} y_{2} \cdots y_{m-1} y_{m}\right)^{R} \\
& \quad=y_{m} y_{m-1} \cdots y_{2} y_{1} x_{n} x_{n-1} \cdots x_{2} x_{1} \\
& \quad=y^{R} x^{R}
\end{aligned}
$$

Detail and Formalism

You can omit some formal details (only) when:

- You are making a clear and correct claim,
- They are not the main point of what you're proving,
- You (and your reader) would be able to fill in the details if asked.

Languages

A language L over alphabet Σ is a set of strings over Σ (i.e.
$\left.L \subseteq \Sigma^{*}\right)$
Computational problem: given $x \in \Sigma^{*}$, is $x \in L$?
Every YES/NO problem can be cast as a language.

Examples of simple languages:

- All words in the American Heritage Dictionary $\{a$, aah , aardvark, .., zyzzva $\}$.
- \emptyset
- Σ^{*}
- Σ
- $\left\{x \in \Sigma^{*}:|x|=3\right\}=\{a a a, a a b, a b a, a b b, b a a, b a b, b b a, b b b\}$

More complicated languages

- The set of strings $x \in\{a, b\}^{*}$ such that x has more a 's than b 's.
- The set of strings $x \in\{0,1\}^{*}$ such that x is the binary representation of a prime number.
- All 'C' programs that do not go into an infinite loop.
- $L_{1} \cup L_{2}, L_{1} \cap L_{2}, L_{1}-L_{2}$ if L_{1} and L_{2} are languages. :

The highly abstract and metaphorical term "language"

- A language can be either finite or infinite
- A language need not have any "internal structure"

Be careful to distinguish

ε The empty string (a string)
\emptyset The empty set (a set, possibly a language)
$\{\varepsilon\}$ The set containing one element, which is the empty string (a language)
$\{\emptyset\}$ The set containing one element, which is the empty set (a set of sets, maybe a set of languages)

(Deterministic) Finite Automata

Example: Home Stereo

- $P=$ power button (ON/OFF)
- $S=$ source button (CD/Radio/TV), only works when stereo is ON, but source remembered when stereo is OFF.
- Starts OFF, in CD mode.
- A computational problem: does a given a sequence of button presses $w \in\{P, S\}^{*}$ leave the system with the radio on?

The Home Stereo DFA

