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Strings and Languages

• Symbol a, b, . . .

• Alphabet A finite, nonempty set of symbols

usually denoted by Σ

• String (informal) Finite number of symbols “put together”

e.g. abba, b, bb

Empty string denoted by ε

• Σ∗ = set of all strings over alphabet Σ

e.g. {a, b}∗ = {ε, a, b, aa, ab, . . .}
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More on Strings

• Length of a string x is written |x|

|abba| = 4

|a| = 1

|ε| = 0

The set of strings of length n is denoted Σn.

2



Harvard CS 121 & CSCI E-207 September 6, 2012

Concatenation

• Concatenation of strings

Written as x · y, or just xy

Just follow the symbols of x by the symbols of y

x = abba, y = b⇒ xy = abbab

xε = εx = x for any x

• The reversal xR of a string x is x written backwards.

If x = x1x2 · · ·xn, then xR = xnxn−1 · · ·x1.
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Formal Inductive Definitions

• Like recursive data structures and recursive procedures when
programming.

• Strings and their length:

Base Case: ε is a string of length 0.

Induction: If x is a string of length n and σ ∈ Σ, then xσ is a
string of length n+ 1.

(i.e. start with ε and add one symbol at a time, like εaaba, but
we don’t write the initial ε unless the string is empty)

• Like how one would program a string type, eg in OCaml:
type string = Epsilon | Append of string*char
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Inductive definitions of string operations

• The concatenation of x and y, defined by induction on |y|.
[ |y| = 0 ] x · ε = x

[ |y| = n+ 1 ] write y = zσ for some |z| = n, σ ∈ Σ

define x · (zσ) = (x · z)σ,

• Like how one might program concatenation, eg in OCaml:

let rec concatenate (a:string) (b:string) : string =

match b with

| Epsilon -> a

| Append(s, c) -> Append(concatenate a s, c)

• Such definitions are formally justified using the same Principle
of Mathematical Induction used in proofs by induction.
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Inductive definitions of string operations

• Facts: For all strings x, y, z,

1. (x · y) · z = x · (y · z)
⇒ we can drop parentheses and write xyz.

2. ε · x = x,

• The reversal of x, defined by induction on |x|:

• Like recursive procedures to compute these operations.
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Structural Induction

When doing proofs about inductively defined objects, it is often
useful to perform induction on the size of the object.

Proposition: (xy)R = yRxR for every x, y ∈ Σ∗

Proof by induction on |y|:

Base Case: |y| = 0. Then y = ε

Induction Hypothesis: Assume (uv)R = vRuR for all u, v such
that |v| ≤ n
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Proof, continued

Induction Step: Let |y| = n+ 1, and say y = zσ, where |z| = n,
σ ∈ Σ. Then:
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Proofs by Induction

To prove P (n) for all n ∈ N :

1. “Base Case”: Prove P (0).

2. “Induction Hypothesis”: Assume that P (k) holds for all k ≤ n
(where n is fixed but arbitrary)

3. “Induction Step”: Given induction hypothesis, prove that
P (n+ 1) holds.

If we prove the Base Case and the Induction Step, then we have
proved that P (n) holds for n = 0, 1, 2, . . . (i.e., for all n ∈ N )
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Proofs vs. Programs

• There is a close parallel between formal mathematical proofs
and computer programs (so doing proofs should make you a
better programmer).

• BUT we generally write proofs to be read by people, not
computers. Thus we use English prose and omit some
low-level formalism when not needed to express our reasoning
clearly.

• If it were just one step in a more complex proof, it would
usually be OK to justify (xy)R = yRxR by writing

(x1x2 · · ·xn−1xny1y2 · · · ym−1ym)R

= ymym−1 · · · y2y1xnxn−1 · · ·x2x1
= yRxR.
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Detail and Formalism

You can omit some formal details (only) when:

• You are making a clear and correct claim,

• They are not the main point of what you’re proving,

• You (and your reader) would be able to fill in the details if
asked.
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Languages

A language L over alphabet Σ is a set of strings over Σ (i.e.
L ⊆ Σ∗)

Computational problem: given x ∈ Σ∗, is x ∈ L?

Every YES/NO problem can be cast as a language.

Examples of simple languages:

• All words in the American Heritage Dictionary
{a, aah, aardvark , . . . , zyzzva}.

• ∅
• Σ∗

• Σ

• {x ∈ Σ∗ : |x| = 3} = {aaa, aab, aba, abb, baa, bab, bba, bbb}
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More complicated languages

• The set of strings x ∈ {a, b}∗ such that x has more a’s than b’s.

• The set of strings x ∈ {0, 1}∗ such that x is the binary
representation of a prime number.

• All ‘C’ programs that do not go into an infinite loop.

• L1 ∪ L2, L1 ∩ L2, L1 − L2 if L1 and L2 are languages.

...
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The highly abstract and metaphorical term “language”

• A language can be either finite or infinite

• A language need not have any “internal structure”
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Be careful to distinguish

ε The empty string (a string)

∅ The empty set (a set, possibly a language)

{ε} The set containing one element, which is the empty string (a
language)

{∅} The set containing one element, which is the empty set (a set
of sets, maybe a set of languages)
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(Deterministic) Finite Automata

Example: Home Stereo

• P = power button (ON/OFF)

• S = source button (CD/Radio/TV), only works when stereo is
ON, but source remembered when stereo is OFF.

• Starts OFF, in CD mode.

• A computational problem: does a given a sequence of button
presses w ∈ {P, S}∗ leave the system with the radio on?
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The Home Stereo DFA
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