Harvard CS121 and CSCI E-207 Lecture 2: Strings, Languages, and Induction

Salil Vadhan

September 6, 2012

Reading: Sipser, Ch. 0 and §1.1

Strings and Languages

- **Symbol** *a*, *b*, ...
- Alphabet A finite, nonempty set of symbols usually denoted by Σ
- String (informal) Finite number of symbols "put together"
 e.g. *abba*, *b*, *bb*

Empty string denoted by ε

• $\Sigma^* = \text{set of all strings over alphabet } \Sigma$

e.g. $\{a, b\}^* = \{\varepsilon, a, b, aa, ab, ...\}$

More on Strings

• Length of a string x is written |x|

|abba| = 4

|a| = 1

 $|\varepsilon| = 0$

The set of strings of length n is denoted Σ^n .

Concatenation

• Concatenation of strings

Written as $x \cdot y$, or just xy

Just follow the symbols of x by the symbols of y

$$x = abba, y = b \Rightarrow xy = abbab$$

 $x\varepsilon = \varepsilon x = x$ for any x

• The **reversal** x^R of a string x is x written backwards.

If
$$x = x_1 x_2 \cdots x_n$$
, then $x^R = x_n x_{n-1} \cdots x_1$

Formal Inductive Definitions

- Like recursive data structures and recursive procedures when programming.
- Strings and their length:

<u>Base Case:</u> ε is a string of length 0.

<u>Induction</u>: If x is a string of length n and $\sigma \in \Sigma$, then $x\sigma$ is a string of length n + 1.

(i.e. start with ε and add one symbol at a time, like $\varepsilon aaba$, but we don't write the initial ε unless the string is empty)

• Like how one would program a string type, eg in OCaml: type string = Epsilon | Append of string*char

Inductive definitions of string operations

• The concatenation of x and y, defined by induction on |y|. [|y| = 0] $x \cdot \varepsilon = x$ [|y| = n+1] write $y = z\sigma$ for some $|z| = n, \sigma \in \Sigma$

define
$$x \cdot (z\sigma) = (x \cdot z)\sigma$$
,

• Like how one might program concatenation, eg in OCamI:

```
let rec concatenate (a:string) (b:string) : string =
match b with
  | Epsilon -> a
  | Append(s, c) -> Append(concatenate a s, c)
```

• Such definitions are formally justified using the same Principle of Mathematical Induction used in proofs by induction.

Inductive definitions of string operations

• Facts: For all strings x, y, z,

1.
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

 \Rightarrow we can drop parentheses and write xyz.

2. $\varepsilon \cdot x = x$,

• The **reversal** of x, defined by induction on |x|:

• Like recursive procedures to compute these operations.

Structural Induction

When doing proofs about inductively defined objects, it is often useful to perform induction on the size of the object.

Proposition: $(xy)^R = y^R x^R$ for every $x, y \in \Sigma^*$

Proof by induction on |y|:

<u>Base Case:</u> |y| = 0. Then $y = \varepsilon$

 $\frac{\text{Induction Hypothesis:}}{\text{that } |v| \leq n} \text{Assume } (uv)^R = v^R u^R \text{ for all } u, v \text{ such } v \text{ and } v \text{ a$

Proof, continued

Induction Step: Let |y| = n + 1, and say $y = z\sigma$, where |z| = n, $\sigma \in \Sigma$. Then:

Proofs by Induction

To prove P(n) for all $n \in \mathcal{N}$:

- 1. "Base Case": Prove P(0).
- 2. "Induction Hypothesis": Assume that P(k) holds for all $k \le n$ (where *n* is fixed but arbitrary)
- 3. "Induction Step": Given induction hypothesis, prove that P(n+1) holds.

If we prove the Base Case and the Induction Step, then we have proved that P(n) holds for n = 0, 1, 2, ... (i.e., for all $n \in \mathcal{N}$)

Proofs vs. Programs

- There is a close parallel between formal mathematical proofs and computer programs (so doing proofs should make you a better programmer).
- BUT we generally write proofs to be read by *people*, not computers. Thus we use English prose and omit some low-level formalism when not needed to express our reasoning clearly.
- If it were just one step in a more complex proof, it would usually be OK to justify $(xy)^R = y^R x^R$ by writing

$$(x_1 x_2 \cdots x_{n-1} x_n y_1 y_2 \cdots y_{m-1} y_m)^R$$

= $y_m y_{m-1} \cdots y_2 y_1 x_n x_{n-1} \cdots x_2 x_1$
= $y^R x^R$.

Detail and Formalism

You can omit some formal details (only) when:

- You are making a clear and correct claim,
- They are not the main point of what you're proving,
- You (and your reader) would be able to fill in the details if asked.

Languages

A language *L* over alphabet Σ is a set of strings over Σ (i.e. $L \subseteq \Sigma^*$)

Computational problem: given $x \in \Sigma^*$, is $x \in L$?

Every YES/NO problem can be cast as a language.

Examples of simple languages:

- All words in the American Heritage Dictionary {*a, aah, aardvark, ..., zyzzva*}.
- Ø
- Σ^*
- \sum
- $\{x\in\Sigma^*:|x|=3\}=\{aaa,aab,aba,abb,baa,bab,bba,bbb\}$

More complicated languages

- The set of strings $x \in \{a, b\}^*$ such that x has more a's than b's.
- The set of strings $x \in \{0, 1\}^*$ such that x is the binary representation of a prime number.
- All 'C' programs that do not go into an infinite loop.
- $L_1 \cup L_2$, $L_1 \cap L_2$, $L_1 L_2$ if L_1 and L_2 are languages.

The highly abstract and metaphorical term "language"

- A language can be either finite or infinite
- A language need not have any "internal structure"

Be careful to distinguish

- ε The empty string (a string)
- \emptyset The empty set (a set, possibly a language)
- $\{\varepsilon\}$ The set containing one element, which is the empty string (a language)
- $\{\emptyset\}$ The set containing one element, which is the empty set (a set of sets, maybe a set of languages)

(Deterministic) Finite Automata

Example: Home Stereo

- P = power button (ON/OFF)
- S = source button (CD/Radio/TV), only works when stereo is ON, but source remembered when stereo is OFF.
- Starts OFF, in CD mode.
- A computational problem: does a given a sequence of button presses $w \in \{P, S\}^*$ leave the system with the radio on?

The Home Stereo DFA