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Turing Machines

Objective: Define a computational model that is

• General-purpose:

(as powerful as programming languages)

• Formally Simple:

(we can prove what cannot be computed)

1



Harvard CS 121 & CSCI E-207 October 16, 2012

The Origin of Computer Science

Alan Mathison Turing

“On Computable Numbers, with an Application to the
Entscheidungsproblem” 1936 11/02/2006 06:02 PMturing.jpg 170!201 pixels
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What Problem Was Turing Trying to Solve?

• David Hilbert

“Mathematical Problems” 1900
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The Logicians

• Kurt Gödel

“On Formally Undecidable Propositions . . . ” 1931

• Alonzo Church

“An Unsolvable Problem of Elementary Number Theory”
1936
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The Cliff’s Notes Version of History
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The Basic Turing Machine

Turing Machines 1

• Reading: Sipser, §3.1.

Turing Machines

Objective: Define a computational model that is

• General-purpose:

(as powerful as programming languages)

• Formally Simple:

(we can prove what cannot be computed)

Alan Mathison Turing

“On Computable Numbers, with an Application to the Entscheidungsproblem” 1936

CF also

• David Hilbert

“Mathematical Problems” 1900

• Kurt Gödel

“On Formally Undecidable Propositions . . . ” 1931

• Alonzo Church

“An Unsolvable Problem of Elementary Number Theory” 1936

The Basic Turing Machine

a! a b a!

F.C.

• Head can both read and write, and move in both directions

• Tape has unbounded length

• ! is the blank symbol. All but a finite number of tape squares are blank.

• Head can both read and write, and move in both directions

• Tape has unbounded length

• t is the blank symbol. All but a finite number of tape squares
are blank.
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Formal Definition of a TM

A (deterministic) Turing Machine (TM) is a 7-tuple
(Q,Σ,Γ, δ, q0, qaccept, qreject), where:

• Q is a finite set of states, containing

• the start state q0

• the accept state qaccept
• the reject state qreject (6= qaccept)

• Σ is the input alphabet

• Γ is the tape alphabet

• Contains Σ

• Contains “blank” symbol t ∈ Γ− Σ
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The transition function

Q× Γ→ Q× Γ× {L,R}

• L and R are “move left” and “move right”

• δ(q, σ) = (q′, σ′, R)

• Rewrite σ as σ′ in current cell

• Switch from state q to state q′

• And move right

• δ(q, σ) = (q′, σ′, L)

• Same, but move left

• Unless at left end of tape, in which case stay put
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Computation of TMs

• A configuration is uqv, where q ∈ Q, u, v ∈ Γ∗.

• Tape contents = uv followed by all blanks

• State = q

• Head on first symbol of v.

• Equivalent to uqv′, where v′ = vt.

• Start configuration = q0w, where w is input.

• One step of computation:

• uqσv yields uσ′q′v if δ(q, σ) = (q′, σ′, R).

• uτqσv yields uq′τσ′v if δ(q, σ) = (q′, σ′, L).

• qσv yields q′σ′v if δ(q, σ) = (q′, σ′, L).

• If q ∈ {qaccept, qreject}, computation halts.
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TMs and Language Membership

• M accepts w if there is a sequence of configurations
C1, . . . , Ck such that

1. C1 = q0w.

2. Ci yields Ci+1 for each i.

3. Ck is an accepting configuration (i.e. state of M is qaccept).

• L(M) = {w : M accepts w}.

• L is Turing-recognizable if L = L(M) for some TM M , i.e.

• w ∈ L⇒M halts on w in state qaccept.

• w /∈ L⇒
M halts on w in state qreject OR M never halts (it “loops”).
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Decidability, a.k.a. Recursiveness

• L is (Turing-)decidable if there is a TM M s.t.

• w ∈ L⇒M halts on w in state qaccept.

• w /∈ L⇒M halts on w in state qreject.

• Other common terminology

• Recursive = decidable

• Recursively enumerable (r.e.) = Turing-recognizable

• Because of alternate characterizations as sets that can be
defined via certain systems of recursive (self-referential)
equations.
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Example

• Claim: L = {anbncn : n ≥ 0} is decidable.
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Questions

• Does every TM recognize some language?

• Does every TM decide some language?

• How many Turing-recognizable languages are there?

• How many decidable languages are there?
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