Harvard CS 121 and CSCI E-207
Lecture 17: Undecidability

Salil Vadhan

November 1, 2012

e Reading: Sipser §4.2, §5.1.

Harvard CS 121 & CSCI E-207 November 1, 2012

Motivation

e Goal: to find an explicit undecidable language

e By the Church—Turing thesis, such a language has a
membership problem that cannot be solved by any kind of

algorithm

e We know such languages exist, by a counting argument.
- Every recursive language is decided by a TM
- There are only countably many TMs

- There are uncountably many languages

*. Most languages are not recursive (or even r.e.)

Harvard CS 121 & CSCI E-207 November 1, 2012

Is every Turing-recognizable set decidable?

This would be true if there were an algorithm to solve

The Acceptance Problem:

Given a TM M and an input w, does M accept input w?

Formally, Aty = {(M,w) : M accepts w}.

Harvard CS 121 & CSCI E-207 November 1, 2012

Completeness of Aty

Proposition: If Ay, is recursive, then every r.e. language is
recursive.

“Atm IS the hardest r.e. language.”
e Aty is said to be r.e.-complete, that is, it is a problem
(a) thatis r.e. and

(b) to which every r.e. problem is reducible

Proof:

Harvard CS 121 & CSCI E-207 November 1, 2012

A simplifying detail: every string represents some TM

e Let X be the alphabet over which TMs are represented
(that is, (M) € X* for any TM M)

o letw e X
o if w= (M) for some TM M then w represents M

e Otherwise w represents some fixed TM M, (say the simplest
possible TM).

Harvard CS 121 & CSCI E-207 November 1, 2012

Thm: Aty IS not recursive

e Look at Aty as a table answering every question:
w3

Y

N (WLOG assume
N every string w;

Y encodes a TM M;)

=
<
<
<~z =z =z

e Entry matching (M;, w;) is Y iff M; accepts w;
e If Arm were recursive, then so would be the diagonal D and its
complement.

e D = {w,;: M, accepts w;}.
e D = {w; : M; does not accept w;}.

e But D differs from every row, i.e. it differs from every
r.e. language. =<.

Harvard CS 121 & CSCI E-207 November 1, 2012

Unfolding the Diagonalization

e Suppose for contradiction that A+ were recursive.

e Then there is a TM M* that decides
D = {(M) : M does not accept (M)}

e Run M* on its own description (M*).

e Does it accept?
M* accepts (M*)

& (M*ye D
< M™ does not accept (M™).

e Contradiction!

Harvard CS 121 & CSCI E-207 November 1, 2012

Alan Mathison Turing (1912-1954)

24 years old when he published On computable numbers . ..

Harvard CS 121 & CSCI E-207 November 1, 2012

Some More Undecidable Problems About TMs

e The Halting Problem: Given M and w, does M halt on input w?

Proof:

Suppose HALT vy = {(M,w) : M halts on w} were decided
by some TM H.

Then we could use H to decide A+ as follows.
On input (M, w),

e Modify M so that whenever it is about to go Into geject, It
instead goes into an infinite loop. Call the resulting TM M.

e Run H((M',w)) and do the same.

Note that M’ halts on w iff M accepts w, so this is indeed a
decider for Aty. = <.

Harvard CS 121 & CSCI E-207 November 1, 2012

Undecidable Problems, Continued

e For a certain fixed My:

Given w, does M, halt on input w?

What about:

e For a fixed M, and a fixed wg, does M, halt on input wg?

Harvard CS 121 & CSCI E-207 November 1, 2012

Further Undecidable Problems

e Given M, does M halt on the empty string?

Proof by reduction:

10

Harvard CS 121 & CSCI E-207 November 1, 2012

“CO-XSS

e For any property X that a set might have, a set S is co-X iff S
has property X.

e For example, a co-finite set of natural numbers is a set that is
missing only a finite number of elements.

e A co-regular languageis...?
e A co-recursive language is ... ?
e What about a co-CF language?

e We proved earlier today:

e A language is recursive if and only if it is both r.e. and co-r.e.

11

Harvard CS 121 & CSCI E-207 November 1, 2012

Non-r.e. Languages

Theorem: The following languages are not r.e.:
e Aty = {(M,w) : M does not accept w}

e HALT+y = {(M,w) : M does not halt on w}

e HALTS,, = {(M) : M does not halt on ¢}

Proof:

12

Harvard CS 121 & CSCI E-207 November 1, 2012

Formalizing the Notion of Reduction

e [, “reduces” to L, if we can use a “black box” for L, to build an
algorithm for L.

e A function f : X7 — X3 Iis computable if there is a Turing
machine that for every input w € 7, M halts with just f(w) on
its tape.

e A (mapping) reduction of L; C X7 to Lo, C X5 is a computable
function
f X7 — 323 such that, for any w € ¥,

w € Ly iff f(w) € L

We write L <,,, Lo.

13

Harvard CS 121 & CSCI E-207

Properties of Reducibility

Lemma: If L; <,,, Lo, then

e if L, is decidable (resp., r.e.), then so is L;

e if L. is undecidable (resp., non-r.e.), then so is L.

2 f computable 2
o///\\‘o
L1 - LQ

R

November 1, 2012

14

Harvard CS 121 & CSCI E-207 November 1, 2012

Examples of Reductions from This Lecture

e For every Turing-recognizable L, L <,,, Atw.

* Arm <, HALT M.

e HALT 1y <., HALTE,,.

15

