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Motivation

• Goal: to find an explicit undecidable language

• By the Church–Turing thesis, such a language has a
membership problem that cannot be solved by any kind of
algorithm

• We know such languages exist, by a counting argument.

· Every recursive language is decided by a TM

· There are only countably many TMs

· There are uncountably many languages

∴ Most languages are not recursive (or even r.e.)
1



Harvard CS 121 & CSCI E-207 November 1, 2012

Is every Turing-recognizable set decidable?

This would be true if there were an algorithm to solve

The Acceptance Problem:

Given a TM M and an input w, does M accept input w?

Formally, ATM = {〈M,w〉 : M accepts w}.
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Completeness of ATM

Proposition: If ATM is recursive, then every r.e. language is
recursive.

“ATM is the hardest r.e. language.”

• ATM is said to be r.e.-complete, that is, it is a problem

(a) that is r.e. and

(b) to which every r.e. problem is reducible

Proof:
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A simplifying detail: every string represents some TM

• Let Σ be the alphabet over which TMs are represented
(that is, 〈M〉 ∈ Σ∗ for any TM M )

• Let w ∈ Σ∗

• if w = 〈M〉 for some TM M then w represents M

• Otherwise w represents some fixed TM M0 (say the simplest
possible TM).
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Thm: ATM is not recursive

• Look at ATM as a table answering every question:
w0 w1 w2 w3

M0 Y N N Y

M1 Y Y N N (WLOG assume
M2 N N N N every string wi

M3 Y Y Y Y encodes a TM Mi)

• Entry matching (Mi, wj) is Y iff Mi accepts wj

• If ATM were recursive, then so would be the diagonal D and its
complement.

• D = {wi : Mi accepts wi}.
• D = {wi : Mi does not accept wi}.

• But D differs from every row, i.e. it differs from every
r.e. language. ⇒⇐.
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Unfolding the Diagonalization

• Suppose for contradiction that ATM were recursive.

• Then there is a TM M∗ that decides
D = {〈M〉 : M does not accept 〈M〉}:

• Run M∗ on its own description 〈M∗〉.

• Does it accept?
M∗ accepts 〈M∗〉

⇔ 〈M∗〉 ∈ D

⇔M∗ does not accept 〈M∗〉.

• Contradiction!
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Alan Mathison Turing (1912-1954)

24 years old when he published On computable numbers . . .
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Some More Undecidable Problems About TMs

• The Halting Problem: Given M and w, does M halt on input w?

Proof:

Suppose HALTTM = {〈M,w〉 : M halts on w} were decided
by some TM H.

Then we could use H to decide ATM as follows.

On input 〈M,w〉,

• Modify M so that whenever it is about to go into qreject, it
instead goes into an infinite loop. Call the resulting TM M ′.

• Run H(〈M ′, w〉) and do the same.

Note that M ′ halts on w iff M accepts w, so this is indeed a
decider for ATM. ⇒⇐.

8



Harvard CS 121 & CSCI E-207 November 1, 2012

Undecidable Problems, Continued

• For a certain fixed M0:

Given w, does M0 halt on input w?

What about:

• For a fixed M0 and a fixed w0, does M0 halt on input w0?
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Further Undecidable Problems

• Given M , does M halt on the empty string?

Proof by reduction:
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“Co-X”

• For any property X that a set might have, a set S is co-X iff S
has property X.

• For example, a co-finite set of natural numbers is a set that is
missing only a finite number of elements.

• A co-regular language is . . . ?

• A co-recursive language is . . . ?

• What about a co-CF language?

• We proved earlier today:

• A language is recursive if and only if it is both r.e. and co-r.e.
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Non-r.e. Languages

Theorem: The following languages are not r.e.:

• ATM = {〈M,w〉 : M does not accept w}

• HALTTM = {〈M,w〉 : M does not halt on w}

• HALTε
TM = {〈M〉 : M does not halt on ε}

Proof:
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Formalizing the Notion of Reduction

• L1 “reduces” to L2 if we can use a “black box” for L2 to build an
algorithm for L1.

• A function f : Σ∗1 → Σ∗2 is computable if there is a Turing
machine that for every input w ∈ Σ∗1, M halts with just f(w) on
its tape.

• A (mapping) reduction of L1 ⊆ Σ∗1 to L2 ⊆ Σ∗2 is a computable
function
f : Σ∗1 → Σ∗2 such that, for any w ∈ Σ∗,

w ∈ L1 iff f(w) ∈ L2

We write L1 ≤m L2.
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Properties of Reducibility

Lemma: If L1 ≤m L2, then

• if L2 is decidable (resp., r.e.), then so is L1;

• if L1 is undecidable (resp., non-r.e.), then so is L2.

More Turing-recognizability, Undecidability 2

(⇐) Conversely, suppose M enumerates L. We want to show that L is RE...

Theorem (PS 7): L is recursive iff L is enumerable in lexicographic order.

Formalizing the Notion of Reduction

• L1 “reduces” to L2 if we can use a “black box” for L2 to build an algorithm for L1.

• A function f : Σ∗
1 → Σ∗

2 is computable if there is a Turing machine that for every input w ∈ Σ∗
1,

M halts with just f(w) on its tape.

• A (mapping) reduction of L1 ⊆ Σ∗
1 to L2 ⊆ Σ∗

2 is a computable function
f : Σ∗

1 → Σ∗
2 such that, for any w ∈ Σ∗,

w ∈ L1 iff f(w) ∈ L2

We write L1 ≤m L2.

• If L1 ≤m L2, then

– if L2 is decidable (resp., Turing-recognizable), then so is L1;

– if L1 is undecidable (resp., non-Turing-recognizable), then so is L2.

f computableΣ∗
1 Σ∗

2

L1 L2

Examples from last time:

– For every Turing-recognizable L, L ≤m ATM.

– ATM ≤m HALTTM.

– HALTTM ≤m Lε.
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Examples of Reductions from This Lecture

• For every Turing-recognizable L, L ≤m ATM.

• ATM ≤m HALTTM.

• HALTTM ≤m HALTε
TM.
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