Harvard CS 121 and CSCI E-207 Lecture 17: Undecidability

Salil Vadhan

November 1, 2012

• Reading: Sipser §4.2, §5.1.

Motivation

- <u>Goal</u>: to find an explicit undecidable language
- By the Church–Turing thesis, such a language has a membership problem that cannot be solved by any kind of algorithm
- We know such languages exist, by a counting argument.
 - · Every recursive language is decided by a TM
 - · There are only countably many TMs
 - · There are uncountably many languages
 - ... Most languages are not recursive (or even r.e.)

Is every Turing-recognizable set decidable?

This <u>would</u> be true if there were an algorithm to solve

The Acceptance Problem:

Given a TM M and an input w, does M accept input w?

Formally, $A_{TM} = \{ \langle M, w \rangle : M \text{ accepts } w \}.$

Completeness of A_{TM}

Proposition: If A_{TM} is recursive, then every r.e. language is recursive.

" A_{TM} is the hardest r.e. language."

- A_{TM} is said to be *r.e.-complete*, that is, it is a problem
- (a) that is r.e. and
- (b) to which every r.e. problem is reducible

Proof:

A simplifying detail: every string represents some TM

- Let Σ be the alphabet over which TMs are represented (that is, $\langle M \rangle \in \Sigma^*$ for any TM M)
- Let $w \in \Sigma^*$
- if $w = \langle M \rangle$ for some TM M then w represents M
- Otherwise w represents some fixed TM M_0 (say the simplest possible TM).

Thm: A_{TM} **is not recursive**

• Look at A_{TM} as a table answering every question:

	w_0	w_1	w_2	w_3	
M_0	Y	N	N	Y	
M_1	Y	Y	N	N	(WLOG assume
M_2	N	N	N	N	every string w_i
M_3	Y	Y	Y	Y	encodes a TM M_i)

- Entry matching (M_i, w_j) is Y iff M_i accepts w_j
- If A_{TM} were recursive, then so would be the diagonal D and its complement.
 - $D = \{w_i : M_i \text{ accepts } w_i\}.$
 - $\overline{D} = \{w_i : M_i \text{ does not accept } w_i\}.$
- But D differs from every row, i.e. it differs from every r.e. language. ⇒⇐.

Unfolding the Diagonalization

- Suppose for contradiction that A_{TM} were recursive.
- Then there is a TM M^* that decides $\overline{D} = \{ \langle M \rangle : M \text{ does not accept } \langle M \rangle \}:$

- Run M^* on its own description $\langle M^* \rangle$.
- Does it accept?
 - M^* accepts $\langle M^* \rangle$

 $\Leftrightarrow \langle M^* \rangle \in \overline{D}$

 $\Leftrightarrow M^*$ does not accept $\langle M^* \rangle$.

• Contradiction!

Alan Mathison Turing (1912-1954)

24 years old when he published On computable numbers ...

Some More Undecidable Problems About TMs

• The Halting Problem: Given *M* and *w*, does *M* halt on input *w*? Proof:

Suppose $HALT_{TM} = \{ \langle M, w \rangle : M \text{ halts on } w \}$ were decided by some TM H.

Then we could use H to decide A_{TM} as follows.

On input $\langle M, w \rangle$,

- Modify M so that whenever it is about to go into q_{reject} , it instead goes into an infinite loop. Call the resulting TM M'.
- Run $H(\langle M', w \rangle)$ and do the same.

Note that M' halts on w iff M accepts w, so this is indeed a decider for A_{TM} . $\Rightarrow \Leftarrow$.

Undecidable Problems, Continued

• For a certain fixed M_0 :

Given w, does M_0 halt on input w?

What about:

• For a fixed M_0 and a fixed w_0 , does M_0 halt on input w_0 ?

Further Undecidable Problems

• Given *M*, does *M* halt on the empty string?

Proof by reduction:

"Co-X"

- For any property X that a set might have, a set S is co-X iff S
 has property X.
- For example, a co-finite set of natural numbers is a set that is missing only a finite number of elements.
- A co-regular language is ...?
- A co-recursive language is ...?
- What about a co-CF language?
- We proved earlier today:
 - A language is recursive if and only if it is both r.e. and co-r.e.

Non-r.e. Languages

Theorem: The following languages are not r.e.:

- $\overline{\mathsf{A}_{\mathsf{TM}}} = \{ \langle M, w \rangle : M \text{ does not accept } w \}$
- $\overline{\mathsf{HALT}_{\mathsf{TM}}} = \{ \langle M, w \rangle : M \text{ does not halt on } w \}$
- $\overline{\mathsf{HALT}_{\mathsf{TM}}^{\varepsilon}} = \{ \langle M \rangle : M \text{ does not halt on } \varepsilon \}$

Proof:

Formalizing the Notion of Reduction

- L_1 "reduces" to L_2 if we can use a "black box" for L_2 to build an algorithm for L_1 .
- A function $f: \Sigma_1^* \to \Sigma_2^*$ is computable if there is a Turing machine that for every input $w \in \Sigma_1^*$, M halts with just f(w) on its tape.
- A (mapping) reduction of $L_1 \subseteq \Sigma_1^*$ to $L_2 \subseteq \Sigma_2^*$ is a computable function
 - $f: \Sigma_1^* \to \Sigma_2^*$ such that, for any $w \in \Sigma^*$,

 $w \in L_1 \text{ iff } f(w) \in L_2$

We write $L_1 \leq_m L_2$.

Properties of Reducibility

Lemma: If $L_1 \leq_m L_2$, then

- if L_2 is decidable (resp., r.e.), then so is L_1 ;
- if L_1 is undecidable (resp., non-r.e.), then so is L_2 .

Examples of Reductions from This Lecture

• For every Turing-recognizable $L, L \leq_m A_{TM}$.

• $A_{TM} \leq_m HALT_{TM}$.

• HALT_{TM} \leq_m HALT $_{TM}^{\varepsilon}$.