CS 121 Section 3

Harvard University

September 27 & 28, 2012

1 Concept Review

1.1 Cardinalities

We classify the cardinality of a set S as follows.

- Finite, if there is a bijection between S and $\{1, 2, \dots, n\}$ for some $n \geq 0$.
- Coutably infinite, if there is a bijection between S and \mathbb{N} .
- Countable, if it is finite or countably infinite.
- Uncountable, otherwise.

Examples include the following.

- Finite: Σ (alphabet), states of a DFA, students in CS121, finite unions of finite sets.
- Countably infinite: Σ^* (strings), \mathbb{Z} , DFAs, countable unions of countably infinite sets.
- Uncountable: $\mathcal{P}(\mathbb{N})$, set of all languages.

Since there are only countably many regular languages and uncountably many languages, 'most' languages are non-regular.

1.2 Pumping Lemma

Theorem 1.1 (Pumping Lemma). For any regular language L, there exists an integer p (the pumping length of L), such that for any string $w \in L$ with $|w| \ge p$, we can write w = xyz, where $|xy| \le p$ and |y| > 0 and $xy^nz \in L$ for all $n \ge 0$.

This result is useful for proving that a language is not regular: We take a string in the language and use the pumping lemma to produce a string that must be in the language, but contradicts the requirements of the language.

2 Exercises

Exercise 2.1. Are the following sets finite (if so, how large), countably infinite, or uncountably infinite? Justify your answer.

- 1. The set of all infinite binary sequences $\{0,1\}^{\mathbb{N}}$
- 2. The set of real numbers \mathbb{R} .
- 3. The set of rational numbers \mathbb{Q} .
- 4. The set of finite languages over the alphabet $\{a, b\}$
- 5. The set of all English words.
- 6. The set of all English sentences.

Exercise 2.2. Are the following languages regular or non-regular. Justify your answers.

- 1. $L = \{a^n b^n : n \ge 0\}.$
- 2. $L = \{a^m b^n : m \neq n\}.$
- 3. L such that L is finite.
- 4. $L = L_1 \cdot L_2 \cdot \cdot \cdot \cdot L_n$, where each L_i is regular.
- 5. $L = \{a^p : p \text{ is prime}\}$
- 6. $L = \{a^{p_1+p_2} : p_1, p_2 \text{ are primes}\}.$
- 7. $L = \{a^r : \text{ there are } r \text{ consecutive 7s appearing in the decimal representation of } \pi\}$

Exercise 2.3. Let Fraternal-Twin $(L) = \{wy : w, y \in L \text{ and } |w| = |y|\}.$

- 1. Is Fraternal-Twin $(L((a \cup b)^*))$ regular?
- 2. Is Fraternal-Twin $(L(a^* \cup b^*))$ regular?
- 3. Show that if L is a regular language over $\Sigma = \{a\}$, then Fraternal-Twin(L) is regular.