CS 121 Section 4

Harvard University

October 4 & 5, 2012

1 Concept Review

1.1 Context Free Grammars

A context-free grammar G is a four-tuple, $G = (V, \Sigma, R, S)$, defined as follows:

- V is the set of variables
- Σ is the set of terminals, and so must be disjoint from V
- R is a finite set of rules, where each rule consists of a variable transforming into a string of variables and terminals
- S is the start symbol, and is an element of V

The idea is that the grammar consists of all strings over Σ^* , our terminal symbols, which we can get by starting with S and following the rules. The process of moving from S to a final string of terminals is known as a *derivation*.

1.2 Derivations

If x, y, and z are strings of variables and terminals and $A \to y$ is a rule of the grammar, then we can write $xAz \Rightarrow xyz$ and say xAz yields xyz in one step.

Extending that idea, if x_1 and x_n are strings of variables and terminals then we can say $x_1 \stackrel{*}{\Rightarrow} x_n$, or x_1 derives x_n , if we can get from x_1 to x_n by following 0 or more rules in succession. More formally, $x_1 \stackrel{*}{\Rightarrow} x_n$ if $x_1 = x_n$ or there is a sequence $x_1, x_2 \dots x_n$ such that for all $i, x_i \Rightarrow x_{i+1}$. In practice, we often aren't very careful about distinguishing between 'derive' and 'yield', and it is ok to use them interchangeably.

The language of a grammar G is then defined as $L(G) = \{ w \in \Sigma^* : S \stackrel{*}{\Rightarrow} w \}$

A derivation for a string w in a grammar G is any series of strings $S \Rightarrow x_1 \cdots \Rightarrow w$ that show how to get w from the rules of the grammar. A leftmost derivation for a string is a derivation where in each step, the leftmost variable in the string is substituted. A grammar is said to be ambiguous if there exists a string in the language of the grammar which has two different leftmost derivations. We often visualize derivations using parse trees.

2 Exercises

Exercise 2.1. Show that the following languages are context-free:

- 1. $L = \{a^i b^j c^k : i, j, k \in \mathbb{N}, and if i = 1 then j \ge k\}$ over $\Sigma = \{a, b, c\}$;
- 2. $L = \{w : w = w^R\};$
- 3. The set of syntactically valid fully-parenthesized boolean expressions consisting of TRUE, FALSE, and, or, not, (, and) that evaluate to true.

Exercise 2.2. Let $G = (V, \Sigma, R, S)$ be the following grammar.

$$S \rightarrow AS \| \varepsilon$$

$$A \rightarrow A1 \| 0A1 \| \varepsilon$$

$$\Sigma = \{0, 1\}$$

$$V = \{A, S\}$$

- 1. Show that G is ambiguous.
- 2. Give a new grammar that generates the same language as G but is unambiguous. Justify briefly why your grammar generates the same language and why it is unambiguous.

Exercise 2.3. Consider the following grammar:

$$\begin{split} S &\to \langle SUBJECT \rangle \langle VERB \rangle \langle OBJECT \rangle \langle MODIFIER \rangle \\ \langle SUBJECT \rangle &\to The \ woman \\ \langle VERB \rangle &\to hit \\ \langle OBJECT \rangle &\to the \ man \ \langle MODIFIER \rangle \\ \langle MODIFIER \rangle &\to with \ an \ umbrella \ | \ \varepsilon \\ Show \ that \ this \ grammar \ is \ ambiguous. \end{split}$$

Exercise 2.4. Show that every regular language has an unambiguous context-free grammar.

Exercise 2.5. Given an arbitrary context free grammar G, provide a general procedure to determine if L(G) is empty.