CS 121 Section &

Harvard University

November 8 & 9, 2012

Overview

This week we will focus on reviewing the core concepts involved with undecidability, re-
ducibility, Rice’s theorem, incompleteness of mathematics, and so on.

1 Concept Review

1.1 Undecidability

By a cardinality argument, we know that almost all languages are undecidable. This argu-
ment, however, does not give us an explicit construction. The following theorem does just
that.

Theorem 1.1. The language {(M,w) : M accepts the input w} is not decidable.

Proof. Assume {(M,w) : M accepts the input w} is decidable, then the language D =
{{M) : M accepts (M)} is decidable, hence D = {(M) : M does not accepts (M)} is de-
cidable. Suppose D is decidable by M, then (M;) € D iff M; accepts (M,) iff (M) € D,
which is a contradiction. (This is the standard diagonalization argument.) O

1.2 Reducibility

Definition 1.1. A function f : X} — X3 is computable if there is a Turing machine such
that for every input w € 3%, M halts with just f(w) on its tape.

Definition 1.2. A reduction of Ly C X7 to Ly C X% is a computable function f : 37 — 33
such that, for any w € X*, w € Ly if and only if f(w) € Lo, and we write Ly <,, L.

Intuitively, L; reduces to Ly means that L, is not harder than Ls. More formally, we can
express this intution in the following lemma.

Lemma 1.1. If L, <,, Ly and Ly is undecidable, then so it Lo.



1.3 Rice’s theorem

Theorem 1.2 (Rice’s theorem). Let P be any subset of the class of r.e. languages such that
P and its complement are both nonempty. Then the language Lp = {{M) : L(M) € P} is
undecidable.

Intuitively, Rice’s theorem states that Turing machines can not test whether another
Turing machine satisfies a (nontrivial) property. For example, let P be the subset of the
recursively enumerable languages which contains the string a. Then Rice’s theorem claims
that there is no Turing machine which can decide whether a Turing machine accepts a.

2 Exercises

Exercise 2.1. Reductions can be tricky to get the hang of, and you want to avoid “going the
wrong way” with them. In which of these scenarios does Ly <,, Lo provide useful information
(and in those cases, what may we conclude)?

(a) Ly’s decidability is unknown and Ly is undecidable

(b) Ly’s decidability is unknown and Lo is decidable

(¢) Ly is undecidable and Ly’s decidability is unknown

(d) Ly is decidable and Lo’s decidability is unknown

Exercise 2.2. Argue that <,, is a transitive relation.

Exercise 2.3. Determine, with proof, whether the following languages are decidable.
(a) L ={(M,z): At some point it its computation on x, M re-enters its start state}
(b) L={{x,y): f(x) =y} where f is a fivred computable function.

(¢) CFry = {(M) : L(M) is context-free}

Exercise 2.4. Show {G : G is a CFG generating x} <, {G : G is a CFG generating xy}.



