CS 121 Section 8

Harvard University

November 8 & 9, 2012

Overview

This week we will focus on reviewing the core concepts involved with undecidability, reducibility, Rice's theorem, incompleteness of mathematics, and so on.

1 Concept Review

1.1 Undecidability

By a cardinality argument, we know that almost all languages are undecidable. This argument, however, does not give us an explicit construction. The following theorem does just that.

Theorem 1.1. The language $\{\langle M, w \rangle : M \text{ accepts the input } w\}$ is not decidable.

Proof. Assume $\{\langle M, w \rangle : M \text{ accepts the input } w\}$ is decidable, then the language $D = \{\langle M \rangle : M \text{ accepts } \langle M \rangle\}$ is decidable, hence $\overline{D} = \{\langle M \rangle : M \text{ does not accepts } \langle M \rangle\}$ is decidable. Suppose \overline{D} is decidable by M_1 , then $\langle M_1 \rangle \in \overline{D}$ iff M_1 accepts $\langle M_1 \rangle$ iff $\langle M_1 \rangle \in D$, which is a contradiction. (This is the standard diagonalization argument.)

1.2 Reducibility

Definition 1.1. A function $f : \Sigma_1^* \to \Sigma_2^*$ is computable if there is a Turing machine such that for every input $w \in \Sigma_1^*$, M halts with just f(w) on its tape.

Definition 1.2. A reduction of $L_1 \subseteq \Sigma_1^*$ to $L_2 \subseteq \Sigma_2^*$ is a computable function $f : \Sigma_1^* \to \Sigma_2^*$ such that, for any $w \in \Sigma^*$, $w \in L_1$ if and only if $f(w) \in L_2$, and we write $L_1 \leq_m L_2$.

Intuitively, L_1 reduces to L_2 means that L_1 is not harder than L_2 . More formally, we can express this intution in the following lemma.

Lemma 1.1. If $L_1 \leq_m L_2$ and L_1 is undecidable, then so it L_2 .

1.3 Rice's theorem

Theorem 1.2 (Rice's theorem). Let \mathcal{P} be any subset of the class of r.e. languages such that \mathcal{P} and its complement are both nonempty. Then the language $L_{\mathcal{P}} = \{\langle M \rangle : L(M) \in \mathcal{P}\}$ is undecidable.

Intuitively, Rice's theorem states that Turing machines can not test whether another Turing machine satisfies a (nontrivial) property. For example, let \mathcal{P} be the subset of the recursively enumerable languages which contains the string a. Then Rice's theorem claims that there is no Turing machine which can decide whether a Turing machine accepts a.

2 Exercises

Exercise 2.1. Reductions can be tricky to get the hang of, and you want to avoid "going the wrong way" with them. In which of these scenarios does $L_1 \leq_m L_2$ provide useful information (and in those cases, what may we conclude)?

- (a) L_1 's decidability is unknown and L_2 is undecidable
- (b) L_1 's decidability is unknown and L_2 is decidable
- (c) L_1 is undecidable and L_2 's decidability is unknown

(d) L_1 is decidable and L_2 's decidability is unknown

Exercise 2.2. Argue that \leq_m is a transitive relation.

Exercise 2.3. Determine, with proof, whether the following languages are decidable.

- (a) $L = \{ \langle M, x \rangle : At \text{ some point it its computation on } x, M \text{ re-enters its start state} \}$
- (b) $L = \{ \langle x, y \rangle : f(x) = y \}$ where f is a fixed computable function.

(c) $CF_{TM} = \{ \langle M \rangle : L(M) \text{ is context-free} \}$

Exercise 2.4. Show $\{G : G \text{ is a } CFG \text{ generating } x\} \leq_M \{G : G \text{ is a } CFG \text{ generating } xy\}.$