
CS 121 Section 8

Harvard University

November 8 & 9, 2012

Overview

This week we will focus on reviewing the core concepts involved with undecidability, re-
ducibility, Rice’s theorem, incompleteness of mathematics, and so on.

1 Concept Review

1.1 Undecidability

By a cardinality argument, we know that almost all languages are undecidable. This argu-
ment, however, does not give us an explicit construction. The following theorem does just
that.

Theorem 1.1. The language {〈M,w〉 : M accepts the input w} is not decidable.

Proof. Assume {〈M,w〉 : M accepts the input w} is decidable, then the language D =
{〈M〉 : M accepts 〈M〉} is decidable, hence D = {〈M〉 : M does not accepts 〈M〉} is de-
cidable. Suppose D is decidable by M1, then 〈M1〉 ∈ D iff M1 accepts 〈M1〉 iff 〈M1〉 ∈ D,
which is a contradiction. (This is the standard diagonalization argument.)

1.2 Reducibility

Definition 1.1. A function f : Σ∗1 → Σ∗2 is computable if there is a Turing machine such
that for every input w ∈ Σ∗1, M halts with just f(w) on its tape.

Definition 1.2. A reduction of L1 ⊆ Σ∗1 to L2 ⊆ Σ∗2 is a computable function f : Σ∗1 → Σ∗2
such that, for any w ∈ Σ∗, w ∈ L1 if and only if f(w) ∈ L2, and we write L1 ≤m L2.

Intuitively, L1 reduces to L2 means that L1 is not harder than L2. More formally, we can
express this intution in the following lemma.

Lemma 1.1. If L1 ≤m L2 and L1 is undecidable, then so it L2.

1



1.3 Rice’s theorem

Theorem 1.2 (Rice’s theorem). Let P be any subset of the class of r.e. languages such that
P and its complement are both nonempty. Then the language LP = {〈M〉 : L(M) ∈ P} is
undecidable.

Intuitively, Rice’s theorem states that Turing machines can not test whether another
Turing machine satisfies a (nontrivial) property. For example, let P be the subset of the
recursively enumerable languages which contains the string a. Then Rice’s theorem claims
that there is no Turing machine which can decide whether a Turing machine accepts a.

2 Exercises

Exercise 2.1. Reductions can be tricky to get the hang of, and you want to avoid “going the
wrong way” with them. In which of these scenarios does L1 ≤m L2 provide useful information
(and in those cases, what may we conclude)?

(a) L1’s decidability is unknown and L2 is undecidable

(b) L1’s decidability is unknown and L2 is decidable

(c) L1 is undecidable and L2’s decidability is unknown

(d) L1 is decidable and L2’s decidability is unknown

Exercise 2.2. Argue that ≤m is a transitive relation.

Exercise 2.3. Determine, with proof, whether the following languages are decidable.

(a) L = {〈M,x〉 : At some point it its computation on x, M re-enters its start state}

(b) L = {〈x, y〉 : f(x) = y} where f is a fixed computable function.

(c) CFTM = {〈M〉 : L(M) is context-free}

Exercise 2.4. Show {G : G is a CFG generating x} ≤M {G : G is a CFG generating xy}.

2


