Undergraduate Engineering Stats (as of Spring 2025) | | BE/BME | EE | ESE | ME | |-----------------|--------|-----|-----|-----| | # Concentrators | 120 | 47 | 40 | 99 | | % SB (vs. AB) | 46% | 91% | 60% | 95% | ## Where have our recent graduates gone? A few examples of where recent alumni are currently: UNIVERSITY OF #### You're invited to learn more! ## Talk to our engineering advisors: Bioengineering/ Biomedical Engineering: Linsey Moyer **Electrical** Engineering: **Chris Lombardo** seas.harvard.edu Environmental Science & **Engineering: Bryan Yoon** byoon@ seas harvard edu Mechanical Engineering: **Seymur Hasanov** seas.harvard.edu Learn more on the web: www.seas.harvard.edu # Engineering @ SEAS Engineers solve real-world problems by applying math and science for **analysis** and **design**. Images courtesy of Alex Yang, BE SB '17 ## Bioengineering At the intersection of life and physical sciences biomedical engineers apply principles of engineering to understand and model living systems and design novel therapies to improve human health. Degrees offered: Engineering Sciences SB (Bioengineering track); Biomedical Engineering AB ## **Electrical Engineering** Covers a range of areas from electronic and computational devices to systems, robotics, energy applications, etc., both theoretical and experimental, at the forefront of the field and industry applications. Degrees offered: Electrical Engineering SB; Engineering Sciences AB (Electrical and Computer Engineering Track) ## **Environmental Science and Engineering** To understand, predict, and respond to natural and human-induced environmental change, environmental scientists and engineers provide technical solutions and advance innovations in environmental measurements, modeling, and control. Degrees offered: Engineering Sciences SB (Environmental Science and Engineering track); ## **Mechanical Engineering** Mechanical engineering uses the principles of physics and materials science for the analysis and design of mechanical and thermal systems. Degrees offered: Mechanical Engineering SB; Engineering Sciences AB (Mechanical and Materials Science and Engineering Track) #### What problem do you want to solve? Senior theses in the Class of 2025: Low Reynolds Number Anemometer for Earth's Stratosphere and the Martian Atmosphere (ME SB) Optimization of Graphene Electrodes for Electric Field-Stimulated Crystallography (EE SB) Engineering chitosan-silk fibroin laminates for use as strong, tough, and biodegradable alternatives to plastic packaging (BME AB) We Never Said You Weren't Exposed: Risk in the Aftermath of the Train Derailment in East Palestine, Ohio Modular hydrogel patch for localized cancer treatment (BioE SB) (ESE SB) #### Frequently asked questions - What's the difference between Bachelor of Arts (A.B.) and Bachelor of Science (S.B.)? - AB: 14-16 courses, more flexible requirements, can do research thesis, can do joint/double concentration - SB: 20 courses, engineering design courses, including individual capstone design project in ES100 (this is a required thesis), ABET-accredited (for professional licensure) - · How can I get involved in research? - Term-time: SEAS labs welcome undergraduates to work on research projects during the term - Can do research for credit by taking ES 91r - Can find a SEAS lab by attending the SEAS Research Labs event in Nov. and/or March. - During summer: Students regularly join SEAS labs with funding through PRISE, HCRP, HUCE - Many students participate in research at other universities through NSF REU programs - What kinds of internships can I do? - Research internships are available through SEAS and national labs. See above. - Industry internships are available and can be found by attending SEAS career fairs or talking to the SEAS Experiential Learning Director, Keith Karasek (kkarasek@seas.harvard.edu) - Where do I start? - · Start taking math (according to placement) and science in your first year - Talk to a concentration advisor (ADUS) in any of our fields to chat about your options - Take one of our introductory courses (see below) - Join a SEAS club (HUES, EWB, HURC, etc...) ## **Gateway Courses** Designed for first-years and sophomores Bio/biomedical ES 53 (Fall) Electrical ES 50 (Spr) ESE 6 (Fall) Mechanical ES 51 (Fall) #### Common course sequences for the first two years | General
Guidelines | Fall | Spring | |-----------------------|---|---| | First Year | Foundational Math
Science or Gateway Engineering | Foundational Math
Science or Gateway Engineering | | Sophomore | Foundational Math (if needed) Science Engineering | Foundational Math (if needed)
Science
Engineering | #### Tips for all students: - First year: At least two courses toward the concentration should be taken each term - Sophomore year: Generally, three courses toward the concentration should be taken each term - Foundational math, physics, science, and gateway courses generally count toward any of the engineering concentrations - Students have the flexibility to switch between programs through sophomore year - Foundational Math: Students should start math in the fall of their first year according to their placement (i.e., start at Math Ma, 1a, 1b, or 21a) and continue each semester until completion of the 21a/b series, which is required of all students. SB students starting in Math 1b and beyond will need to take additional advanced math courses beyond foundational math - **Physics**: Students should complete the physics series by spring of sophomore year. Typical sequences are: - Spring first year (PS 12a or Physics 15a) then fall sophomore year (PS 12b or Physics 15b) - Fall first or second year (Physics 15a or AP 50a) then spring first or second year (Physics 15b or AP 50b) - **Life Science/Chemistry/other Science**: Students should take the appropriate course relevant to their discipline (see chart below). #### Bio/biomedical engineering | Fall | | Spring | | |------------|---|--|--| | First Year | Foundational Math
LS 1a/LPS A | Foundational Math
Physics
(LS 1b) | | | Sophomore | ES 53
Found. Math (if needed)
Physics | Found. Math (if needed)
Physics (if needed)
Engineering course | | #### Tips for Bio/BME students: - Most Bio/BME students take ES 53 in sophomore fall, though some take the course in fall of first year - Physics is a co-req for ES 53. It is highly recommended to start physics in the first year - While not strictly required for the SB program, many premed SB students take LS 1b (beyond concentration requirements), but it need not be taken in the first year #### Environmental science and engineering | | Fall | Spring | |------------|---|--| | First Year | Foundational Math
ESE 6
Consider: AM 10 | Foundational Math
PS 11
PS 12a | | Sophomore | Found. Math (if needed)
PS 12b
Engineering course | Found. Math (if needed)
Physics
Engineering course | #### Tips for ESE students: - Take ESE 6 in your first semester if your math placement is 1B or higher - PS 11 is required for both AB and SB students - · LS1a is not recommended for ESE concentrators #### Electrical engineering | | Fall | Spring | |------------|--|--| | First Year | Foundational Math
Physics or CS 50 | Foundational Math
Physics or CS32
ES 50 | | Sophomore | Found. Math (if needed)
Physics (if needed)
ES 155 or ES 152 | Found. Math (if needed)
CS 32 (if needed)
ES 156 | #### Tips for EE students: - First-year students who place out of Math 1b can take ES 155 in their first fall semester - First-year students should strongly consider ES 50 in spring - Strongly recommended to start physics in first year to be able to take ES 152 (co-req Physics b) in sophomore year #### Mechanical engineering | | Fall | Spring | |------------|--|---| | First Year | Foundational Math
ES 51
AM 10 or CS 50 | Foundational Math
ES 50
Physics
CS 32 (if needed) | | Sophomore | Found. Math (if needed)
Physics
ES 51 (if needed)
AM 10 (if needed) | Found. Math (if needed)
Physics (if needed)
ES 50 (if needed)
ES 120 | #### Tips for MechE students: - MechE students should complete ES 51 by sophomore fall - Almost all MechE students take ES 120 in sophomore spring