Course Listing

Data Science 1: Introduction to Data Science

APCOMP 209A
2025 Fall

Pavlos Protopapas, Kevin A. Rader
Monday, Wednesday, Friday
9:00am to 10:15am

Data Science 1 is the first half of a one-year introduction to data science. The course will focus on the analysis of messy, real life data to perform predictions using statistical and machine learning methods. Material covered will integrate the five key facets of an investigation using data: (1) data collection - data wrangling, cleaning, and sampling to get a suitable data set;  (2) data management - accessing data quickly and reliably; (3) exploratory data analysis – generating hypotheses and building intuition; (4) prediction or statistical learning; and (5) communication – summarizing results through visualization, stories, and interpretable summaries. Part one of a two part series. The curriculum for this course builds throughout the academic year. Students are strongly encouraged to enroll in both the fall and spring course within the same academic year. 

Course Website

Data Science 2: Advanced Topics in Data Science

APCOMP 209B
2025 Spring

Pavlos Protopapas, Natesh Sivasubramonia Pillai
Monday, Wednesday, Friday
9:00am to 10:15am

Data Science 2 is the second half of a one-year introduction to data science. Building upon the material in Data Science 1, the course introduces advanced methods for statistical modeling, representation, and prediction. Topics include multiple deep learning architectures such as CNNs, RNNs, transformers, language models, autoencoders, and generative models as well as basic Bayesian methods, and unsupervised learning. Students are strongly encouraged to enroll in both the fall and spring course within the same academic year. Part two of a two-part series.

Course Website

Data Science 2: Advanced Topics in Data Science

APCOMP 209B
2026 Spring

Pavlos Protopapas, Kevin A. Rader
Monday, Wednesday, Friday
9:45am to 11:00am

Data Science 2 is the second half of a one-year introduction to data science. Building upon the material in Data Science 1, the course introduces advanced methods for statistical modeling, representation, and prediction. Topics include multiple deep learning architectures such as CNNs, RNNs, transformers, language models, autoencoders, and generative models as well as basic Bayesian methods, and unsupervised learning. Students are strongly encouraged to enroll in both the fall and spring course within the same academic year. Part two of a two-part series.

Course Website

Advanced Practical Data Science

APCOMP 215
2025 Fall

Pavlos Protopapas
Tuesday, Thursday
12:45pm to 2:00pm

The primary objective of this course is to provide a comprehensive understanding of the Deep Learning process in a practical, real-world context. With a strong emphasis on Machine Learning Operations (MLOps), this course not only reviews existing Deep Learning flows, but also enables students to build, deploy, and manage applications that leverage these models effectively. In the rapidly evolving field of data science, merely creating powerful predictive models is not enough. Efficiently deploying and managing these models in production environments - a practice often referred to as MLOps - has become an essential skill. MLOps bridges the gap between the development of Machine Learning (ML) models and their operation in production settings, combining practices from data science, data engineering and software engineering. This course is built upon the model of balancing conceptual understanding, theoretical knowledge, and hands-on implementation. It introduces students to the iterative process of model development, testing, deployment, monitoring, and updating, ensuring they acquire a strong foundation in MLOps principles.

Course Website

Critical Thinking in Data Science

APCOMP 221
2025 Spring

Michael Smith, Simson Garfinkel
Monday, Wednesday
3:45pm to 5:00pm

This course examines the wide-ranging impact data science has on the world and how to think critically about issues of fairness, privacy, ethics, and bias while building algorithms and predictive models that get deployed in the form of products, policy and scientific research. Topics will include algorithmic accountability and discriminatory algorithms, black box algorithms, data privacy and security, ethical frameworks; and experimental and product design. We will work through case studies in a variety of contexts including media, tech and sharing economy platforms; medicine and public health; data science for social good, and politics. We will look at the underlying machine learning algorithms, statistical models, code and data. Threads of history, philosophy, business models and strategy; and regulatory and policy issues will be woven throughout the course.

Course Website

Critical Thinking in Data Science

APCOMP 221
2026 Spring


Monday, Wednesday
3:45pm to 5:00pm

This course examines the wide-ranging impact data science has on the world and how to think critically about issues of fairness, privacy, ethics, and bias while building algorithms and predictive models that get deployed in the form of products, policy and scientific research. Topics will include algorithmic accountability and discriminatory algorithms, black box algorithms, data privacy and security, ethical frameworks; and experimental and product design. We will work through case studies in a variety of contexts including media, tech and sharing economy platforms; medicine and public health; data science for social good, and politics. We will look at the underlying machine learning algorithms, statistical models, code and data. Threads of history, philosophy, business models and strategy; and regulatory and policy issues will be woven throughout the course.

Course Website

Computational Design of Materials

APCOMP 275
2025 Fall

Boris Kozinsky
Tuesday, Thursday
10:30am to 11:45am

This course covers theoretical background and practical hands-on applications of modern computational atomistic methods used to understand and design properties of advanced functional materials. Topics include classical interatomic potentials and machine learning methods, quantum first-principles electronic structure models based on wave functions and density functional theory, Monte Carlo sampling and molecular dynamics simulations of phase transitions and free energies, fluctuations and transport properties. Applications include atomistic and electronic effects in materials for energy conversion and storage, catalysis, alloys, polymers, and low-dimensional materials.

Course Website

Computational Science and Engineering Capstone Project

APCOMP 297R
2025 Fall

Weiwei Pan
Wednesday
12:45pm to 3:30pm

The capstone course is intended to provide students with an opportunity to work in groups of 3-4 on a real-world project. Students will develop novel ideas while applying and enhancing skills they have acquired from their core courses and electives. By requiring students to complete a substantial and challenging collaborative project, the capstone course will prepare students for the professional world and ensure that they are trained to conduct research. There will be no additional homework. There will be several mini-lectures, focusing on supplemental skills such as technical writing, public speaking, reading research papers, using version control software, identifying biases, etc. Since the projects concern real-world projects, datasets will likely be messy, and there is a focus on effectively communicating your progress to both the staff and partner organization.

Course Website

Computational Science and Engineering Capstone Project

APCOMP 297R
2025 Spring

Weiwei Pan
Wednesday
12:45pm to 3:30pm

The capstone course is intended to provide students with an opportunity to work in groups of 3-4 on a real-world project. Students will develop novel ideas while applying and enhancing skills they have acquired from their core courses and electives. By requiring students to complete a substantial and challenging collaborative project, the capstone course will prepare students for the professional world and ensure that they are trained to conduct research. There will be no additional homework. There will be several mini-lectures, focusing on supplemental skills such as technical writing, public speaking, reading research papers, using version control software, identifying biases, etc. Since the projects concern real-world projects, datasets will likely be messy, and there is a focus on effectively communicating your progress to both the staff and partner organization.

Course Website

Computational Science and Engineering Capstone Project

APCOMP 297R
2026 Spring


Wednesday
12:45pm to 3:30pm

The capstone course is intended to provide students with an opportunity to work in groups of 3-4 on a real-world project. Students will develop novel ideas while applying and enhancing skills they have acquired from their core courses and electives. By requiring students to complete a substantial and challenging collaborative project, the capstone course will prepare students for the professional world and ensure that they are trained to conduct research. There will be no additional homework. There will be several mini-lectures, focusing on supplemental skills such as technical writing, public speaking, reading research papers, using version control software, identifying biases, etc. Since the projects concern real-world projects, datasets will likely be messy, and there is a focus on effectively communicating your progress to both the staff and partner organization.

Course Website

Interdisciplinary Seminar in Applied Computation

APCOMP 298R
2025 Fall

Weiwei Pan
Friday
2:15pm to 3:30pm

This course examines sources of and mitigation frameworks for social bias in technology (with a special focus on generative AI). We examine social bias in tech in two ways:

1. by examining structural (e.g. cultural, social and institutional) factors underlying the low levels of diversity in decision making roles in technology, and

2. by examining the unequal social impact of technology in deployment.

Through readings, students will gain familiarity with a wide range of previously identified structural challenges for achieving equitable representation in tech and fair outcomes when technology is integrated into social institutions.

The focus of the course will be on identifying leadership opportunities and concrete strategies for making positive changes in tech communities (both inside and outside classroom) as well as in the way that technology is deployed, used, monitored and governed.

In view of the roll-out of the EU AI Act(the world's first horizontal and standalone law governing AI) on August 1st 2024, this semester, we will take a special focus on connecting policy to technical research. Specifically, we will survey frameworks for discovering and quantifying social bias in ML/AI systems and explore ways that these technical tools can support enforcement of AI regulations. We will anchor our research to concrete goals and principles of the AI Act.

Course Website

Special Topics in Applied Computation

APCOMP 299R
2025 Fall

Daniel Weinstock

Supervision of experimental or theoretical research on acceptable applied computation problems and supervision of reading on topics not covered by regular courses of instruction.

Course Website

Special Topics in Applied Computation

APCOMP 299R
2025 Spring

Daniel Weinstock

Supervision of experimental or theoretical research on acceptable applied computation problems and supervision of reading on topics not covered by regular courses of instruction.

Course Website

Special Topics in Applied Computation

APCOMP 299R
2026 Spring

Daniel Weinstock

Supervision of experimental or theoretical research on acceptable applied computation problems and supervision of reading on topics not covered by regular courses of instruction.

Course Website